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PREFACE

The book is devoted to problems in which the interaction bet-
ween an elastic solid and an incompressible fluid plays an essen-
tial role, both media being considered at rest.

The formulation of the static problems of hydroelasticity is ba-
sed on hydrostatics and the static theory of elasticity, the strength
of materials, and plate and shell theory. The greatest interest is
the interaction of a fluid with thin-walled structures such as a rod,
membrane, plate, or shell. In the listed order, the equilibrium and
deformation of various elastic thin-walled elements under the ac-
tion of fluid forces is considered in this book. :

In the introduction, the statement of static problems of interac-
tion is given, and some information from hydrostatics necessary
for later use is presented. Several examples are noted in which the
effect of two-media interaction leads to qualitatively new results.

The first chapter includes characteristic problems concerning a
vertically placed thin rod and a thin-walled tube. The axial and
lateral forces resulting from the action of their own weight and a
hydrostatic force are determined. The stability of the elastic ele-
ment is considered.

The second chapter is devoted to the consideration of elastic
membrane behaviour. The membrane may be the bottom of a ca-
vity or it may cover a container with fluid. The cases of a circular
cavity and a cavity extended in one direction are considered.

In the third chapter, bending and stability of a plate contacting
a fluid are considered under the action of different forces. In all
these three chapters, problems are mainly stated and solved in a
linear approximation.
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Nonlinear problems of bending of a plate and buckling of shal-
low cylindrical panels under the hydrostatic pressure are studied
in the fourth chapter. To simplify the analysis, the models of pla-
ne deformation for a plate or panel and consistent fluid behavi-
our are taken.

The fifth and sixth chapters are devoted to the consideration of
equilibrium of a membrane shell and a film in the presence of flu-
id forces. Out of the wide range of possible problems, results con-
cerning two problems are presented here. They deal with the soft
containers for storing and transportation of fluids and displacing
equipment. These problems are essentially nonlinear.

The references are given separately for each chapter. The list of
literature is not complete, but is representative.

The statement and solution of some of the problems presented
here have been known previously. Other problems are described
for the first time. Their choice has been made according to the
author's scientific interests and his knowledge of the extensive li-
terature. Preference has been given to problems with simple and
clear solutions. That is why some problems are mainly of a model
character. They may be used for the simplest presentation of the
principal features of hydroelastic systems, namely, the dependen-
ce of hydrodynamic forces, acting on deformable body, on the
body deformations themselves. Because of this choice, the main
direction of the book is related to the analytical solutions of
boundary value problems. Results of numerical simulation are
rarely used.

Different chapters and paragraphs are written in different
styles. Those problems which have relatively simple mathematical
representation, are discussed quite comprehensively. As for prob-
lems complicated to calculate, their formulation and results of
practical importance are mainly given. In doing so, attention is
drawn to the dependences of system behaviour, of forces arising



PREFACE \4

in the system, on the mass properties of media, dimensions and
other input parameters. Essential problem features are pointed
out. If necessary, the details of solution may be found in the
original references.

The book is intended for the specialists dealing with the prob-
lems on strength of construction elements, and the reliable func-
tioning of separate assemblies of machinery and devices. It may
also be used by students for the comprehensive study of certain
questions in courses on strength of materials, hydrostatics, plate
and shell theory.

The author is obliged to doctor A.A.Aganin for his help in
translation and L.B.Gaseeva for her assistance in preparing the
manuscript. Prof. M.S.Ganeeva and Prof. V.I.Usyukin have int-
roduced many suggestions for improving the arragement of the
material. The author gratefully acknowledges Prof. Earl H.
Dowell, Dean of the School of Engineering at Duke University,
for his close support while editing and issuing the book. Without
his generous participation the publication of the book would not
have been possible.

The research described in this publication was made possible in
part. by Grant NoRHA4000 from the International Science Foun-
dation and by Grant N093-013-17940 from the Russian Foun-
dation of Basic Research.
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INTRODUCTION

The problems of aerohydroelasticity may be divided into dyna-
mics and statics. In the first, both interacting media are subjected
to changes in time. The transition process (for example, response
of structure in fluid to incident shock wave), the steady motion
(oscillations with constant amplitude and period etc.) are conside-
red. Such a well known aeroelastic phenomenon as flutter of a lif-
ting thin surface (wing, blade) in fluid flow belongs to the first class
while divergence of the same system falls to the second one. In the
simplest static problems, it is assumed that both media are at rest.

Overwhelming majority of original investigations, reviews and
monographs are devoted to dynamic problems, which can be exp-
lained by their great practical significance and complexity in-ana-
lysis of the physical processes under consideration. Since the appe-
arance of the first substantial publications e.g. [1,2], which have
already become classical, several dozens of monographs and revi-
ews have been published on various problems. They also touch
upon static problems with steady fluid flow. A brief review and
quite complete list of monographs are given in the books [3—5].

With respect to the classical problems for both interacting me-
dia at rest, there are no previous texts on the subject. To some
extent this work fills the gap. But it does not pretend to cover the
subject completely.

It should be noted that the absence of such books does not
indicate that the static problems of hydroelasticity are of little
importance. First, analysis of equilibrium of hydroelastic system
is a component part of total structure analysis. Secondly, statics
calculations are of great independent significance. Long before
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the appearance of constructions in which hydroelastic effects were
essential (air and water transport, various reactors and tubing
systems, sensors in instruments etc.), there had been objects in
which static interaction of a structure with a fluid medium was
the most substantial factor. The origin and application of some of
these has been lost with time. Perhaps the first objects were the
closed shells made out of skin and hollow organs of animals.
They were used for storing fluids (wineskin) and flotation (bal-
loons, pneumatic rafts). The subsequent development of weaving
introduced air balloons, pneumatic boats, etc.

More recently it became possible to use new hydroelastic devi-
ces due to the appearance of modern synthetic tissues and films
possessing large strength. These include a pneumatic cylindrical
shell (airbeam), pneumatic structures, air supporting building con-
structions (domes of sport and storage buildings with large bays),
ship's containers for transportation of fluid cargo, displacing
equipment in aerospace engineering and many other objects.

Another reason has been the development of new energy tech-
nologies. For example, sea-oil extraction is related to building
and exploitation of various platforms, as well as vertical boring
and extracting tubes. Many hundred meters long, these tubes even
in a stretched state may be subjected to undesirable longitudinal
bending. For their proper strength and reliability analysis the flu-
id inside the tube and the water surrounding it should necessarxly
be taken into account.

The general statement of the fluid-structure interaction prob-
lem includes a choice of model of motion or equilibrium of the
deformable solid and liquid (gas) and formulation of conditions
on their contact surface.

To describe the behaviour of a deformable body, we shall use
the equations of the bending theory of rods, membranes, plates
and shells based on the hypotheses valid for the case of a small
thickness as compared to the length and radius. The choice of the
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corresponding equations and conditions of fastening will be de-
termined by the physical statement of a problem.

Fluid is considered to be inviscid. Standard assumptions of hyd-
rostatics are taken. Their brief represen-
tation is given below.

Slow fluid deformation without change
in volume may be caused by action of some .
small force. In a gravitational field, the flu-

id takes the shape of the vessel. Its free sur-
face is perpendicular to the direction of the
grav1tat1(.)na.1 fc.>rce. In commur%lcatmg. ves- Fig. 0.1, Hydrostatic
sels the liquid if homogeneous in density is pressure is indepen-
set to the same level. * dent of vessel shape

Pressure in a liquid does not depend on
the orientation of the area under consideration and acts equally
in all directions (Pascal's law).

In a gravitational field, pressure in the fluid increases with the
«depth of submergence due to the liquid weight itself. If the fluid is
incompressible, the total pressure p (hydrostatic pressure) con-

sists of pressure p on the fluid surface and weight of fluid co-
lumn (of height H, Fig. 0.1) with density p, and free fall acce-
leration g

p=po+pgH. (©.1)
Pressure force pgHS acting on the bottom of a volume with

the area S does not generally coincide with the weight of fluid
contained in the volume. If the height / is the same for the volu-
mes of different shape but with the equal bottom area S (Fig. 0.2),
then, in spite of the difference in weight, the pressure force on the
bottom is the same for any volume and is equal to the weight of
the liquid in cylindrical vessel. This "hydrostatic paradox" is due
to the fact that the fluid pressure force on inclined walls has a
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vertical component with the upward and downward direction
depending on the orientation of wall element.

In the general case, equal pressure p over all the volume
results from the fact that the volume is subjected to the action of
external forces. For the example in Fig.0.3, we have po=P/S.
But the pressure can not aiways be determined so easily. In the

< M

Fig. 0.2. i'Hydrostatic paradox" — pressure force on the bottom of a vessel is
independent of the shape of the vessel

case of loading of a flexible plate with freely slipping edges
(without separation) along the vessel wall (Fig.0.4a) it is again

equal to the same value P/S, whereas for the case of the edges

clamped in the wall (Fig.0.4)) it may be found only by solving
the corresponding problem of plate bending.

In fact, the first example does not belong to hydroelastlclty,
because the problems of hydrostatics and elasticity are decoupled

here (when the value of pgH is small as compared with pg).

This may be valid for the small size of a vessel along the vertical
and in some other cases. Parameters of plate bending are

determined from the known values P and p,. The second
example leads to a coupled hydroelastic problem. Only the
uniform distribution of pressure p can be known beforehand. It

should be noted that the necessity of takirig into account of pg

always arises in the case of closed cavities totally filled with fluid.
In a fluid, a body with the volume V is subjected to a buo-
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yancy force P, directed upwards and equal to the weight of fluid
displaced by the body (Archimede's law).

P=pgV. 0.2

It is independent of the body submergence depth. Mass. center of
. a uniform body (the center of displacement) is taken as the load

" MLP—/—

a)

b)/'\r,c

b) p e

== S

Fig. 0.3. Rigid piston freely slipping  Fig. 0.4. Flexible plate with freely
along the vessel walls slipping (@) and fixed (b) edges -

point. When the body is not uniform the point does not coincide
with the mass center of its submerged part. If for the total
submergence of the body the buoyancy force is greater than its
weight, the body only partly submerges into the fluid. Clearly, in
equilibrium, the point of buoyancy force application and body
mass center are located on the same vertical line.

Let the deformable body A be bounded by a contour I”
(Fig. 0.5). According to the assumption of an incompressible
fluid, the normal displacement @ of /= and liquid surface
deflection A after deformation will be related by

[odr = [nary. - (0.3)
I ! :
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Here the kinematic condition for the equality of the normal de-
flections of elastic body and liquid has already been taken into
account. Static condition for pressure equality on-contact surface
should also be satisfied.

If even only one dimension of the volume occupied by fluid is
of order lcm, it is equally important to take into account gravity

and surface tension forces. In the case of
v. N _E | large dimensions, the gravitational effects
i U ~ | dominate while capillary ones become
predominant when the dimensions are
small. The same estimations are valid for
Fig. 0.5. Elastic body A the dimensions of.a rigid body contacting
partly submerged into ~ f]yid. _

invempressible uid In this book, no con51derat10n is given
to the problems in which surface tension

forces have to be taken into account. _

In what follows we shall also use the notion of specific weight
y=pg . In the general case we also introduce into consideration

the overload factor # and the gravitational field vector g . Then

¥ =npg . What was mentioned above together with relations

(0.1)—(0.3) cover almost all the knowledge from hydroelasticity
which will be necessary for further consideration. The particular
related questions will be discussed below in connection with the
formulation of concrete problems. '

At first sight it may seem that the hydroelastlc forces acting on
an elastic element will not produce any effects leading to
qualitatively differing results as compared with the case of pres-
cribed "dead" load. But this is not always the case.

A metallic circular plate cannot float on the water surface. It
goes down. But at certain values of the plate radius and load in its
center it will be floating. Clearly, this phenomenon may be des-
cribed only on the basis of hvdroelasticitv.
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The value of the internal pressure in incompressible liquid
seems to be unexpected in the problem shown above in Fig. 0.4b.
Under some conditions one has py =3 P/S in the case of circular
plate, i.e. the pressure is three times as much as in the problem of
Fig. 0.4a. Hence, the plate is also subjected to the trebled pressure
from below.

A vertical plate separating an incompressible fluid in a closed
vessel and subjected to compression in the direction of the shorter
part, loses stability of the plane shape forming two half waves.
Under the usual conditions, only a one half wave is known to
arise. Certainly, corresponding critical values of compressive
loads will also be different.

The list of such examples may be continued. In more detail, we
consider the following simple example. Let the bottom of a long
vessel with the width 2L and height // be a membrane (Fig. 0.64).

‘The latter, being fastened to the walls (x =+L), is in tension with
the initial strength 7y. The vessel is filled up to its edges with
fluid with the specific weight y . The equation which describes the
deflection @ of a membrane from its plane position is known to
have the form Tj a’2w/ dx® + p« =0, where p, is the fluid

pressure. The downward direction of w is taken to be positive.
Let H be approximately the height of the fluid column. Then

the pressure will be known beforehand: p, = yH . The membrane
weight is assumed neglected as compared with the yH .
Then the equation

dzw/dx2 =—a’H (a2 = 7/TO) (0.4

has a solution

w=A+Bx—a2Hx2/2.
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Satisfying the boundary conditions w =0 (x = iL) ,'we find
272 2
_@:Q(l_x_), ©.5)
A 2 12

If we take into account the exact value of fluid column A + w(x)
then p, = y(H +w) and, instead of (0.4) and (0.5), we shall have

d*w/dx® + o*w=—-a?H, (0.6)
@ _cosax | ©7)
A . cosal

For small values of al as compared with unity, (0.5) may be
derived from (0.7) by expanding the functions cosax and
cosalL into power series. Thus, for small values of @l , both so-
lutions give the same result. Relative deflection of membrane is

a) v b)
H w/H T

1

R ——
2L 0 2 oL

Fig. 0.6. @) Membrane under action of liquid weight. 5) Relative memb-
rane deflection versus the parameter al = Ly /T,

directly proportional to the specific weight of fluid and the square
of membrane width and is inversely proportional to its tension

(a2L2 = yLQ/TO).

With increasing aL, the solution (0.5) remains formally valid
whereas, according to (0.7), the solution increases indefinitely
when al — 7z/2 (the curves | and 2 in Fig.0.6b correspond to

the solution (0.5) and (0.7), respectively). For al > z/2 the def-

lection w becomes negative, but this does not correlate with the
real physical phenomenon. For its proper description the model
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of membrane deformation should be changed. This question is
considered later in the relevant section of the book.

For H =0 and for finite values of aL, expressions (0.4), (0.5)
give @ = 0. In this solution there is a membrane deflection from
the plane form and there is no liquid over the membrane. But
0.6), (0.7) together with the boundary conditions w= 0

(x :iL) become an eigenvalue problem. Nonzero solution for
w (when H =0) exists for cos aL =0, that is when aL = nr/2

(n=13,...). So, when aL=7/2 (or }/Lz/TO =7r2/4) the equi-
librium state of fluid meniscus over membrane is possible together
with membrane deflection for H =0.

Thus, this example also demonstrates the possibility of qualita-
tive differences of solutions for one and the same problem formu-
lated with or without taking into account the interaction of the
media.

The property of compressibility of fluids has an appreciable
effect on the process of their interaction with elastic elements,
especially when the medium is compressed in closed cavity. Let

there be initially in the volume V; a weightless fluid with the

mass My, density pg =My /Vo and pressure py. After boun-
dary deformations and mass inflow (outflow) these parameters
become equal to V, M, p=M/V and p, respectively. Then

p/po =(p/Po)" - (0.8)

If the process of interaction goes on isothermally (at constant
temperature due to the heat removal), x=1. In the adiabatic
process (without the heat removal) x =14 for gases and K=T1
for liquids. Some other relations between these parameters are
also used for liquids.



CHAPTER I

EQUILIBRIUM OF A THIN ROD
AND TUBE IN A LIQUID

§1. Equilibrium of a vertical rod in a liquid

A thin elastic rod with ball tip is at rest in a liquid in a vertical
position. On the fluid surface there is a rigid plate with a hole in
which the upper end of the rod is clamped (Fig. 1.1a). We shall
examine the axial forces in the rod when it is in an exactly vertical
position, as a function of the size of the rod and ball as well as of

specific weight of the rod y, ball ¥ and liquid y .

a) N © b)

4 . N |x
_V _7y7zr3 l 1L
i Yo p |x 11

-

i 7 a b
Y - Eg

@ R

Fig. 1.1. The rod with ball tip lowered into the fluid; y o, ¥, ¥ are the spe-
cific weights of material of the rod, ball and liquid, respectively

We assume that the ball radius R is small in comparison with

the rod length L, the cross-section radius of which is 7. The ball is
supposed to be rigid.
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Weight of the ball and the rod element (L ~x) is equal to
(4/3)72R° y| + mr*(L — x)y o According to (0.2) the buoyancy
force of the fluid on the ball, not attached to the rod over the area
ab (Fig. 1.1,D), is equal to (4/3)7[]337/ . In order to exclude in the
system the effect of pressure on the area ab it is necessary to apply
the same pressure, but with the opposite sign, on the rod section
a'b’. Then the buoyancy force on the rod (without the ball) will
be r? Ly, Conséquently\ from the equilibrium condition the
axial force N in the rod, with the x-coordinate calculated from
the clamped end, is
| N:zrz[yL—yo(L—x)]+%nR3(y—yl). (1.1)

Positive values of N correspond here to the compression. The
reaction force is found from (1.1) by setting x =0.
~ Consider some consequences from (1.1) as a function of
specific weight and size of the rod and tip.

1. The inequality N(x =L) <0 or
3 3
1+ 48] <y AR (12
3reL
gives the condition under which the rod is stretched everywhere,
maximum tension being near the support (x = O). When

R3/r?L >>1 this condition reduces to the ine uality ¥ < 7.
‘ qu e

. 2. If the parameters of the problem fulfill the condition N
:,(x = O) >0 or

3 3
}’(1‘*‘ ;rR;L) =¥ Tt ;ng’ (]3)

the rod is compressed everywhere. The section near the tip
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(x= L) is subjected to the maximum compression. When

Yo = 7|, condition (1.3) is reduce to an obvious inequality

¥o > 71. Thesame is true if RS/rSL <<1, and y{ is not much
greater than y .

3. The case of stretched upper and compressed lower parts of
the rod arises when the total weight of the rod with the tip is gre-
ater than the weight of displaced fluid and the weight of the ball
is less than the weight of fluid displaced by the ball. This is the
caseif ¥y <y, ¥o >y . The boundary X, between these zones is

determined by taking the force in (1.1) to be equal to zero. Then

3
gy =leby L =LL+£(};—}/1) (O<L.<L). (1.4
Yo SF Yo

The stressed state is also strongly dependent on the geometric
parameters L, 7, K.

Whern the rod is compressed along all its length (the case 2)
some force is necessary to apply to its upper end (if the rod can be
moved in the hole without friction) in order to confine it in fluid.
Under conditions 2 and 3 the rod is in equilibrium and does not
move downward only if its upper end is held. For the latter
condition the upper part of the rod is in tension while the lower
one is compressed.

The analysis given above may be simplified if there is no ball
tip (or if R <r). According to the assumption of r to be small as
compared with L, (1.1) reduces to the expression

2
N =ar*[yL - yo(L — %)].
This means that only second and third states are possible.
Either there is compression along all the length (¥ > yq) or we
have partial compression and tension (¥ < 7). In both cases the
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compression force has its maximum at the lower end and the
tension force at the support.

Now consider the values of L, for the typical densities. For an
aluminum rod with radius 7 =15-10"°m (yro=8pg =
= 2.7g kg/(n?s?)), plastic tip with radius R=10"2m (y) =
= gp) =05g kg/(m?s?) and water (¥ = gp =1gkg/(m?s?)), it
follows from (1.4) that L, = (0.37L +011)m. The lower part of
the rod with the length L, is compressed while the upper one with
the length xy = (0.63L — 011)m is stretched.

- If mercury with specific weight ¥ =13.55g kg/(m?s?) is chosen
instead of water the value of L, becomes equal to (5L +2.86) m.

Consequently, independently of the length L, there is only com-
pression force in the rod. This also results from the condition
¥ >y mentioned above. Note that the size of the compression
and tension zones are not affected by acceleration g. Different
overloads lead to corresponding changes in forces in a rod.

In the case of a hollow ball and rod (tube) the influence of
fluid density increases in comparison with the examples conside-
red above. Assume that there is no liquid inside (Fig. 1.2a).

If the wall thickness A is small as compared with radii R and r
(R=Roth, r=ry+h, h<<R, h<<r), then instead of (1.1)
we have

N =Ly - n(rQ = rOQ)(L — X)yo +
+ %ﬂR ¥ — %ﬂ(Rs - Rg’)yl =

= mr[rLy — 2h(L — x)y o] + %ﬂRQ(R}f —3hyy). (L9
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a)

77777777

Fig. 1.2. a) The hollow rod and spherical ball in fluid. ) The column
under own weight

All the discussion above can be fully transferred, with some
small changes, to the system directed upwards (Fig. 1.24). It may
be a bearing column, support of a sea construction, a rubber ball
filled with a light gas and held by a thread, etc.

If we assume that there is no frlctlon bet-
ween the rod and the orifice of the plate, and
that the length L is greater than the submer-
gence depth H (Fig. 1.3), then the expression
for the force will have, instead of (1 1), the
following form

N:ﬂrDH—yMH—xﬂ+%M?@—yQ.

1

Fig.1.3. A rod freely | (1.6)
slipping in the orifi-
PCI; 0% the plate The force N is on]y compressive. The value

H is determined from the condition of
equilibrium of the whole system

4R (y —

H=LZQ———L%—ﬂl (H<L). .7
¥ 3rty '

For R<r and r << L it follows from (1.7) that H/L=yq/y .

The submerged depth of the rod is to its length as the specific
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weight of the rod to that of the fluid.
Substituting (1.7) into (1.6), we have

N= nrQ[yoL(l—y—Mﬁ) -
| y L

4R3(7~71)( | 70) 4,3
—— "2 |-+ ZR*(y — 1) 1.8
3 J*3 (r —71) (1.8)
When R <7 we obtain '

N=m2y0L(1—-72+£).
y L

Maximum compression is at x = H . Sincenow H =Ly [y, itis

equal to N = m“z;foL. At the upper end of the rod x=H~L
and N =0.

It is known that when the rod is stretched along its full length,
the corresponding strains and displacements can be easily found.
The case becomes more complicated if the rod is compressed. For
certain system parameters, other equilibrium states are possible,
namely the elastic line can deflect from a strictly vertical position.’
It causes the appearance of bending moments. This question will
‘be considered in the following paragraphs.

§2. Stability of the vertical position of a rod in a liquid

To determine the conditions under which equilibrium states of
a compressed rod with deflection from the vertical line are
possible, we make some simplifying assumptions.

Suppose that the rod radius r is small as compared with the
ball radius R, which, in turn, is assumed to be small in -
comparison with the rod length L (L >> R >>r). Because of this
we consider L to be a distance from the ball center to the plate
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(Fig. 1.4) and do not take into account the own weight of the rod
and the action of the lifting force of fluid on the rod. In other
words, we consider the case (1.3) along with additional condition

y >y, 4<<1 where
7~—%o

_3 £(L)2
4 R\R/ |y —v¥1
Thus, the rod is subjected to the constant compression, along
its length, by the end force equal to the difference between lifting
force of the tip and its weight.
Assume the deflection from vertical line to be small. Conven-
tional assumptions for considering the bending of a thin rod are
. taken. The depth of tip submergence will
11mm I -Y— 40t be changed by such a bending. It will
- only lead to the appearance of some small
| winl) £ angle between the elastic line at x =L
and weight forces and buoyancy forces of
\ | the liquid. Regarding the latter forces, the
following remark should be made. Under
deflection from the vertical ‘and rotation
of the ball in the plane of a figure, the
resultant force of fluid pressure forms an
angle with the vertical line. This angle
depends- on the relationship between constant and variable

components of hYdrostatic pressure (pg and y x). If there is only

. @

Fig. 1.4. Bent rod in fluid

Po, it coincides with the angle of elastic line rotation dw/ dx at

the point x = L. Such a "tracing" force causes some difficulties in
the investigation. The problem should be formulated as a dyna-
mic one. Relevant questions are considered, for example, in the
monograph [7]. In the given case it is necessary to pay attention to
the lateral forces acting on the rod. Somewhat later we shall turn
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back to this question. In the next paragraphs we take pg =0. In

doing so, the resultant P= (4/3) 7R® (» — 1), independently of

axial line rotation dw/dx (x = L), is directed along the vertical.

Thus, under assumptions mentioned above we come to the
well-known Euler problem of rod stability. At the bearing cross-
section, the deflection and rotation angles are zero:

w=dw/dx=0. (x=0),
At the other end (x = L), the bending moment is zero, but the

deflection is equal to some value W . These conditions are
satisfied by the expression

=W/(l—- 1’5) 2.2
w cos o 2.2)

To continue our analysis we apply the strain energy method.
Strain energy is known [21] to be related to the moment M as
follows

L
1 2
—Efj M*“dx " (23)

where EJ is the bending stiffness. Bending moment of the elastic
line from the concentrated force with respect to a point with
coordinate X is

M =2 7Ry - 1) (L) - (). @4

Work A of the acting force is done on the axial deflection
u(L) With the assumptions taken above, it is related to the

deflection w by
€ (dw
(d ) pil

urg

)
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Therefore, we have
L 9
_2 p30, (ﬁ@)
A=ZaR(y n){ | dx. 2.5

The values of the parameters for which deflection of the rod
from the vertical becomes possible, are determined by the
equation [21]

U=A. (2.6)
Substitution of (2.2) into (2.4) and (2.5) and the use of
expressions (2.3) and (2.6) give the following critical value of the
end force

_4 s _@QE
P'_gﬂ'.R (}/ yl)— ) LQ'

For the of rod of circular cross-section (J = (72'/4)7’4) the

critical difference between specific weights of fluid and tip
materials is

Q.7

87 EI _3z> E(r\*(r)®
YN =16 pe2 64 E(E) (z) ’ @8
on exceeding which a new equilibrium state of the system,
deflected from the vertical position, becomes possible.
For a tube-shaped section J = (7[/4)(7’4 —'r04). If the wall

thickness is small so that we can take A<<r the mentioned
critical value is

37% E h(r)*’”.' ot

PTN=Te RI\R
It is assumed here that there is no fluid in the inner space. Filling
this space with fluid essentially changes the problem. This will be

discussed further.
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Now we consider the other critical case A4>>1 when the
presence of the tip may be not taken into account. Changing signs

of ¥ and yq, we obtain the inverse system (Fig.1.20). Let

v o >>y . Therefore, the influence of the medium is not taken in-
to consideration. This is a well-known stability problem of a co-
lumn under its own weight [18, 19, 21, 22].
The solution can be presented by the series in which the first
member is given by function (2.2), the next one is equal to
W3 (1 — cos(37x/2L)), etc. The bending moment of elastic line

from elementary force (7rr2 dé‘) ¥ o With respect to the point with

coordinate x is
L
M = 7y [ [w(é) - w(x)]dé. (2.10)

‘Work of forces is

i L ¥ (@)
A= ﬂrQyoju(x) dx, u(x) =—j(—) dé.  (2.11)
2 d&
0 0
From (2.10), (2.11), (2.3), (2.6) and taking into account the
mensioned above, we obtain the critical value of the rod weight
xrlly, =T84EI[I?. 2.12)
It is important to note here the fast convergence of the series
for w. Taking only its first member (i.e. the function (2.2)) in
(2.12), we obtain 7.89 in place of 7.84. The exact value of this
factor is 7.83 [22]. Thus, the approximate value of the critical pa-
rameter somewhat exceeds the exact one. This is a distinguishing
feature of the strain energy method used here. It is explained by
the fact that, taking an approximate formula for elastic line, we
impose some extra constraints on the system and, by doing so, we
increase its rigidity.
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ILGAMOV M.A. Static Problems of Hydroelasticity. — Moscow:
Nauka. Fizmatlit, 1998. — 208 p. — ISBN 5-02-015122-X

§3. Some general features of problem of stability

of vertical rod

We shall consider the stability of a vertical rod in a fluid under
various fastening conditions on the basis of the buckling equ-
ation. Based on this equation, some general properties of rod
stability problem will also be determined. We start from the usual
assumption of the thin beam bending theory: the cross-section
remains planar and its shape does not change. Changes in the
length of the axial line are also neglected.

Fig. 1.5 presents an element of a deformed thin rod along with
compression forces N, the own weight Fy, dx and the resultant
gdx of the fluid forces. To determine the latter, the Archimedes'
law cannot be applied here in the form (0.2) because it is derived
by summation of hydrostatic pressure over all the submerged

surface of body. As a result of such a procedure, the buoyancy
force of fluid does not depend on the shape of the body, on the

depth of its submergence, and on the uniform pressure Po-
Deformation of the body with its volume conservation does not
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lead to any changes in the buoyancy force.
But the bending of the rod gives rise to the lateral force g

acting on the rod (hydrostatic forces do not act on both cross-
sections of the element). This is explained by the fact that, on
buckling, a difference arises between areas of convex and concave
sides of lateral surface of the rod as well as by the changes in
hydrostatic pressure on rotating the element. These changes seem
to be small as we consider small deformations and rotations. But
in the given problem they should be taken into account [12, 15].

a) b) T/
Mo N z al
* -
Q z <
__i'__ z(y)
L z
B qdx (
/ z(y) b {’
Q+dQ ,_\/ g |
N+dN Y
Y

Fig. 1.5. a) Element of bent rod with length dx. b) Cross-section of rod of
arbitrary shape

Let us put the origin of the axial coordinate x into the upper
end of the rod. The bending takes place in the plane xz, the rod
section rotates about axis y (the origin of coordinates y, 2
coincides with the gravity center of the section). For the sake of
definiteness, we assume that the rod is borne by its lower end
while the upper one may be in various conditions. Let the axial

compression be N =P + Fyyx where P is the vertical force
applied to the upper end of the rod with cross-section area F .
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From considering the equilibrium of the element in Fig. 1.5 we
obtain the equation

dQ d ( dw) v
ot dr) ~ 150
which, using equations Q = dM/dx, M =-EJ dzw/dxz, can
be presented in the form
diw dw
X
Denoting the coordinates of lateral lines in the cross-section by
Z;(y) and Z,(y), we shall have

- | fro+7[x- 2022} 1- 2) L2 |ay -

—j[ {Po + Y{X < Zz(y)fi—f]}[l - Zz(y)i—zf]dy-

Using the integrals

[126)- 2@y =F.  [[Z36)-22)|ay =0
we obtain

dw d dw
F + +F —[ + —] 3.2
q=F(po 7x) il ey (po +7x) o (3.2

Thus, the dxstrlbuted lateral force g on the rod from fluid

depends on the curvature and slope of elastic line. Note that the
rod, before deflection from the vertical, is subjected to only
compression by a hydrostatic force on the end face and by its own
weight, whereas the liquid does not have any influence on the
lateral surface.
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Using (3.2), the buckling equation can be written in the form

EJ‘—i——+—{[(P+Fy0x) F(p0+yx)]dw} 0. (3
dx*

From equation (3.3) the following statement may be derived
for the problem of stability of the rod. A rod under hydrostatic
pressure bends with the same features as the rod without fluid ac-
tion if the vertical end compressing force is presented in the form

P. =P - Fpg, (3.4
and the own weight of the rod is taken to be
Ye =Yoo — V- (3-5)

According to (3.4) and (3.5), the constant part of the pressure
causes changes in the critical value of the end load P while its
variable part in the critical value of the own weight of the rod of

unit length yoF . These critical values increase because the liquid

acts on the lateral surface of the rod and, by doing so, leads to its
stabilization.

For a tube with fluid inside these critical values significantly
decrease because the sign of g in (3.2) should be changed. This

corresponds to changing signs of py and y in (3.3)-(3.5) to the

opposite ones. The behavior of the tube will be considered in the
last paragraphs of this chapter. In the following two paragraphs
we shall concentrate our attention on the problem stated above.

§4. Two special cases of load

Let us turn back to the problem of pillar stability under its
own weight, considered at the end of § 2. It follows from (3.5) that
the presence of surrounding fluid of depth L leads to changing
the specific weight y in (2.12)-(2.14) to yo — 7 . For example,
(2.12) will have the form
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ar?L(yo —y)=T84EJ[I2. @.1)

When yo = y the pillar is always stable.

This problem may seem to be equivalent to that of stability of
a rod vertically lowered in fluid and clamped at the level of its

free surface (Fig. 1.3). One need only to change the signs of y
and y . But it is well to bear in mind that in this case there is also
the end tracing force equal to FLy. The compression forces are

significantly different even in their nondeflected state (§1).
Formulae like (4.1) are widely used. For example, they may be
applied to estimating the stable length of the vertical position of
the cable in liquid when its upper end is supported [9]. In spite of
the relatively small flexural rigidity and specific weight exceeding

the specific weight of the water (yy > y ), there exists a length

L= 1.25‘%/Er2/(y0 —y) for which (and for lesser values) the

lower part of the cable does not fall to the bottom. This formula
shows what part of the cable can float in the vertical position.
In the process, some supporting influence on the cable is

exerted by ‘the pressure py = yH where H is the depth of the

upper end from the water surface. Of course, the last circum-
stance is not taken into account in (4.1).
Consider one more particular case: the action of the axial force

P and the constant part p, of hydrostatic pressure on the rod

the ends of which can freely slip in supports in longitudinal
direction (Fig. 1.6), the weight of the rod being neglected.

Thus, we have w = dw/dx =0 (x =0, L) and the equation
(3.3) takes the form

d* d?
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Its solution is

w=C +Cyx+Cssinax+Cycosax, a2=%(P—FpO)>O,

w=C, +Cyx +Cye™ +Cye a2=$(Fpo _P)>0.

Satisfying the mentioned fastening conditions gives in the first
case the equation

2(1-cosal)—-aLsinal =0,
when Cj, # 0. The lowest nonzero root is aL = 27 . Hence, the
loss of stability takes place for

(P -Fpy), = An2EJ[[?. (4.3)

Note that in the second case the coefficients C, are equal to
zero for all aL. Consequently, in the problem under consi-
deration there is no stability loss for Fpy > P.

The question of interest is the rod behavior under all-sided
pressure pg, i.e. when the end forces

are caused by fluid pressure P = Fp. ‘P ‘ P
By special arrangement of supports, the o|o olo
force P does not change its direction ﬁo -
in bending.

I
Using various assumptions and !
statements, this problem has been :
considered in many works, for example q
in [13, 14, 17]. It is assumed in [13] that by
the infinite elastic band (-0 < x < 0, s
—h/2 < y < h/2) is subjected to a uni- f
form pressure p, along its boundaries
Fig. 1.6. Ends of rod can de-

Y = ih/ 2. Moreover, the band is flect in axial direction; their
compressed in the longitudinal direc-  rotation is not allowed

q

o
o
P
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tion x by the same pressure p,. Using equations of the plane
elasticity theory, it was for the first time found in [13] that the
band is always stable. There are also conclusions of an opposite
character [14].

But these effects are beyond the range of the elementary
bending theory (4.2). In the case under consideration we have

P=Fp, and equation (4.2) has the solution
w=C, +Cyx+C3x% +Cyx°,
which, on satisfying the fastening conditions of the rod, gives

C, =0. The rod under all-sided uniform pressure is always

stable.
This assertion is also valid for the cantilever rod when its own

weight may be not taken into account (Fig.1.7a). "For con-
firmation we may turn to our everyday observations. After all, the

Fig. 1.7. a) The rod under uniform pressure. b) Behavior of flexible wire in
container with high pressure

atmospheric pressure does not interfere with keeping the straight
linear form by the thin straw of any length and rigidity" [8].

In conclusion let us underline again some features of the lateral
forces (3.2). Unlike the buoyancy force which is the integral of
the variable part of the hydrostatic pressure over the body

surface, the expression (3.2) includes the total pressure pg +y X.
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Hence, g depends on the submergence depth of the object in
liquid and on the mean part of the pressure pg. Since in a variety
of technical devices py may be much larger than the variable part

of hydrostatic pressure, the influence of p on the lateral force ¢

should be taken into account in the general case.

Consider, for example, the behavior of a perfectly flexible wire
in a vessel of high pressure [8]. One end of the wire is fastened
while the other is passed through the orifice in the vessel wall
(Fig. 1.7b). We assume that the wire can move in the orifice wit-
hout friction. The bent wire will be pushed out until it becomes
straight. Clearly, a wire of finite flexural rigidity will not be
straightened out completely. Bending moments and transverse
forces will arise in it.

§ 5. Stability of rod under various fastening

conditions. Mine shaft

A vertical rod is fastened at its lower end, its upper one can be
under various conditions. Liquid is assumed to exert only lateral
pressure and not to produce axial forces, i.e. it does not act on the
end sections of the rod. The liquid level coincides with the upper
end of the rod.

Such a scheme may be used, for example, in studying mine
tubes [15]. In contrast to usual practice, they need not be in the
immediate contact with mining rock. Under conditions of alluvial
layers, the mine tube along all its length (up to 500 m) is surroun-
ded by a liquid bituminous mass filling the space between the out-
side wall and the mining rock. The tube bears up by its lower end
against the circular concrete foundation. Mounted on the foun-
dation, the thick lead plate provides the desirable hinge effect. In
other cases it is necessary to fasten the lower end along its large
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length, which is equivalent to clamping. The upper end can move
in the horizontal direction or such displacement is eliminated by a
plate made around the tube and firmly fixed in rock. In both
these cases there is freedom of displacement in the vertical direc-
tion so that the weight of the tube is taken up by the lower
support. The same scheme is used in sea-oil production, etc.

So, in the given case the equation (3.3) takes the form

4 3(yn —
d—?+t(§g"——+d—wj 0, £=%, t-_-FL(70 7).
d& dg? dé L EJ

The origin of the coordinate & coincides with the upper end of

(5.1)

the rod. A solution in [15] is found in a series as

w= Y Cyé*. (5.2)

k=0
Substitution of (5.2) into (5.1) gives the recurrent formula

(k+2)(k+3)(k+4)Cpiy +t(R+1)Cp,y =0,
whence all the constants can be expressed in terms of Cy, C;, Co,

Cs. Finally, the solution is

w=Cy + Clé(l + ZKP(v)tV§3Vj +

v=I
+c2§2[1 + ZKQ(V)tVf:;V] & C3§3(1 # ZKQ?(V)Z‘V{,’SV]. (5.3)
v=I v=1

Here the superscripts in K}’ correspond to the subscripts of the
constants and their subscripts to the order of derivative of w.

The values of K},
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v-I1 _1\V .o v-l
K(v) = (( 1)1)| U(l+3n), Kg(v)=(_‘)_i [1@2+3n),

3 (Bv+1)! ad S

v v-1
K3(v) = ( 1) 1)' H(3+3n)

are tabulated [15]. As v increases, they decrease rapidly. For
example,

K2(1) = 0042, KP(2)=0079-102, KJ(1)=-0033,
K3(2)=0049-1072, KJ(I)=-0025, KJ(2)=0030-10"2.

All K,?(v) for v = 3,4,... decrease by two orders.

The first three derivatives of (5.3), which are necessary for
determining the constants, are

v _c (1 i ZKll(v)t"§3VJ i
v=I

g
+2c2§[1 +3 Ké@)t“@"") +3c3§2(1 + ZKé(v)tV.f:”"),
v=l v=1
-‘i—ﬂ = Y K +
f v=l (5.4)
+2C2{1 + 3 K3 (v)t"§3"] +GC3§(1 +3 K32(v)t"éj3"),
v=I v=1
d nv__(: f( ¢ §3v 2
df 1‘/2l P (v)
+2C, 3 K3(Mt e +6C, (1 + ZKg(v)t"f‘?"’J.
v=1 v=l

Using (5.3), let us consider different fastening conditions of the
pillar ends.
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a) In the previous paragraph, the critical value (4.1) was found
for the case of free upper and fastened lower ends. Using the
following conditions

d’w _ d*w dw
= = O é = O ’ w = O (é )
for expressions (5.3), (5.4), we find Cy = Cy = C3 =0 and, for
C, # 0, the equation

1+ Y K (W)t =
v=I
Therefore the lowest critical value of £ is
l. =784, (5.5)
which coincides with (4.1) and (2.12).
b) Both ends are hinged
2
w:d—%”=o (£=01)
dé

=1858. (5.6)

c) The upper end is hinged, the lower one clamped. From
conditions

The critical value is

d’w _dw _
and from (5.3), (5.4) we obtain
t. =52.50. (2.7)
d) The upper end is clamped, the lower one hinged
dw d*w
_E—O (5—0), w—d—é:?—O (f—l)

The critical value of the load parameter is
t-=30.01- —(5.8)
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As is seen, the interchange of conditions in c) and d) leads to
significant differences in critical values of load parameter (5.7)
and (5.8).

e) Both ends are clamped. The critical parameter is

t, = 7462. (5.9)

§6. Stability of vertical pipe with liquid.

Buckling of pipe in tension

Consider the same problem, as in §3, and corresponding
equation (3.1). The difference is that the liquid of specific weight

y; and mean pressure p; fills the pipe of channel section area i,

The outer surface is not in contact
with liquid. Now F in (3.1) should 8
be changed for the area of pipe cross- it

section F,. For a circular pipe o
Fo = (r? = 1) or if the wall thick-

ness A is small Fy = 2zrh. Asin §3,

the origin of the axis x is placed at
the upper end of the tube.
Lateral distributed forces g are

produced by liquid action on inner
pipe walls and are g = —q;, where

q,dx

6+d0

Fi(p+dp)

Fig. 1.8. Liquid element inside
the tube of length dx

g; dx is the lateral action of the wall

on the liquid element of length dx (Fig. 1.8). Projecting forces on
undeformed axes x and 2, we obtain

y ;F.dx + pF; cos @ — (p + dp) F; cos(6 + db) -

—-q;dx sin(@ + d—;—) =0,
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pF; sin @ — (p + dp) F; sin(6 + d6) + qidxcos(a + %) = 0.

Using cos @ ~ 1, sin @ ~ 6 ~ dw/dx, we have

d d dw
Loy 4 =Fi’CE(PE)- (6.1)

It follows from the first equation of (6.1) that p = p; + y,;x
while from the second one that

q=-q; =-F Ed;((Pi i YiX)%)- (6.2)

Therefore, the equation (3.1) for the pipe takes the form

4

Efzx—éf +%{[(P+ Foyox)+ Fi(p; +}/ix)]%%} =0. (6.3)
If the liquid fills the pipe only to height H; < L (Fig. 1.9), the
term p; +y;x in (6.3) should be taken in the form
pi +7i(x—H;) and only in the interval L—H; <x <L, put-
ting p; +y,x=0 for 0 < x <L — H;. The same is valid for the
< term (pg + y x) in(3.3). If the upper part

of the pipe with both ends closed is
occupied by the light medium (gas) at

the pressure p; then p; should be taken

instead of p; +y,x in the interval
O<x<L-H;and p; +y;(x - H;) in
the interval L — H; < x < L. Obviously,

Hy the force P+ Fyyox is again taken
along the entire length L. The height
H, can also be higher than L, for

Fig. 1.9. Pipes with liquid ~€Xample, in the case of supplying liquid

W77 77777



EQUILIBRIUM OF A THIN ROD AND TUBE IN A LIQUID 33

through a flexible hose (Fig. 1.10). Then pressure y(H; — L) is

included in composition of mean pressure p; .

'As is seen from (6.3), bending of the pipe with liquid has the
same features as in the case without liquid if the vertical
compressing end force is presented in the form

P.=P+Fp, (64
and the own specific weight of rod ¥, is changed for
Ye=vo+(Fi/R)r:- (6.5)

Therefore, in contrast to (3.4), (3.5) the internal hydrostatic
pressure leads here to a decrease of critical values of the end force
and pipe weight.

Let us consider in more detail the case of a pipe with constant
internal pressure, being under action only of the end force,
neglecting own weights of the pipe and . v
liquid [8]. : ‘

Let a thin-walled pipe of internal radius
r; and wall thickness A join together own = il -

V-

containers under pressure p; (Fig.1.11a).

If one end of the pipe can freely slip in the
support, then P =0. Also, the pipe pre-
sented in Fig. 1.115 is not subjected to
axial compression. In this case, the equa-
tion (6.3) has the form

4 . 2
d ‘f+ Pi_d ‘;’= : Fig. 1.10. Supply of li-
dé Ehr; dx quid into pipe through
a flexible hose. Diffe-
For clamped ends the critical value of rent liquid levels in and
out the pipe

H, L [H

internal pressure is p;x = 47:2Ehr,- / F.r
the internal pressure exceeds this value, buckling of the pipe is
possible as it is under axial compression. For the scheme in
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a) b)- c)

& & O

Fig. 1.11. Pipes with different conditions at one of their ends. Internal
pressure exerts different action on the tubes

Fig. 1.12 considered in the book [8], the same result is valid when
p; = 7r2Ehri /L2 and the end force is P = 7z3Ehri3 /L2 :

Buckling of stretched pipe (by the force —P) is possible if

—P+F,p; >47%EI[I*. (6.6)

When the stretching force —P is produced by the internal
pressure p; acting on a circular diaphragm or a step (Fig. 1.13a)
of orifice radius 7, at slipping end of the pipe, then
GRS

From (6.6) we derive the buckling condition

, 4n°Ehr |

pi = L2 rh2 (67)

If the step is absent (7, =r;), from (6.7) we derive the value of cri-

tical pressure mentioned above. If the diaphragm fully closes the
slipping pipe end,.a pipe is stable under any value of internal pres-
sure. The same result is valid for the schemeshownin Fig. 1.11c¢. It
is pertinent here to-make a comparison with the question of sta-
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bility of a rod under all-sided exter-nal pressure (§5).
Now let us somewhat change the problem. Let the pipe be
fastened by its end to rigid walls the distance between which does

not change (Fig.1.136). Can it -
buckle under action of internal pres- 1 P
sure p;? Because of radial expansion,
the axial stretching force occurs x ’
—P =-27nr;N,, where N, is the J |
force on longitudinal band of unit < i
width of the wall. We neglect the |
bending end effect of the wall near ‘
the end sections. |
Using Hooke's law, we obtain p - o
N, = K(g EE Vga) , Fig. 1.12. Stability loss of the
¥ pipe in the absence of axial
Ng =K(eg+ve . ) compression of its wall

Because of absence of axial defor-
mation (&, =0), we have N, = Kvey = vNy, from the condi-

tion of ring equilibrium, Ny =7, p;. Therefore, —P = —_27zvri2pi
and, according to (6.6),

47> Ehr,
p; 2

£ eie—— 6.8
[2(1-2v) €

Thus, buckling is possible. With increase of Poisson's ratio of
material, the critical internal pressure increases. The straight
linear form of a pipe made out of incompressible material

(v =1/2) is stable with respect to constant internal pressure. It

should be checked if the pressure determined by (6.8) does not
lead to large end stresses and rupture of the pipe. The allowable
pressure value corresponding tothis criterion-is defined by the



36 CHAPTER I

formula p; = o,h/r;, where o, is the ultimate strength. Using

(6.8), we find
(4 -2(=)
L 472 \EJ
For steels oy, / E~1072 - 10_3, v ~ 0.3. Therefore, according to

this formula r; /L ~ 0.003 — 0.01. Thus, in the problem for pipes

with small ratio of diameter to length, buckling of an elastic line
takes place before its rupture.

a) b)

N

-0

2

A0
r ra g arw“

Fig. 1.13. a) End unit of a pipe with a step allowing for free slipping.
b) Pipe clamped by its ends in unmovable walls

Now consider stability of a pipe with liquid under its own
weight (P = p; = 0). The lower end of the pipe is clamped, the

upper one free, H; = L. From (6.3) we have

prd’w +(Fo}’ox+ﬁ}’zx)d +(Foro +F}’z)dw
dx* dx?

As is seen, here lateral forces are produced not only by curva-
ture but also by the angle of deflection of elastic line from the ver-
tical. Similar to (4.1), the critical value of parameters can be pre-
sented in the form

Foyo+Fy; =T84EJI/L3. 6.9)
In the case of circular pipe we shall have
Er
BB ¢ W s 7t

2h Wi
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§7. Stability of drilling and producing oil column tubes

A large number of investigations is devoted to studying stabili-
ty of drilling and producing oil tubes, hydraulic columns, pipe
pillars of sea-oil platforms and other structures [1-6, 10, 11, 16].
Different levels and densities of surrounding water and internal
fluid (clay solution, oil etc.) are taken into account.

As was found in previous paragraphs, the external pressure
improves stability of vertically standing tubes while internal pres-
sure leads to decreasing critical values of parameters. Simulta-
neous consideration of these factors is recognized as important
for such structures. Some solutions of such problems are presen-
ted below, following [1-6].

Unlike previous paragraphs, it is more convenient here to take
the origin of the coordinate x at the lower tube foundation faste-

ned at the bottom. The tension force N(x) and lift P produced

by supporting buoys, platform, ship, etc., are taken to be positive.
The latter is applied to the upper end of the tube.

Thus, this problem belongs to the third type of initial state
when the upper part of the tube is stretched while the lower one
may be compressed (§1). Boundary of these zones is determined
by formula like (1.4). But, as was shown in previous paragraph,
the tube can buckle even if it is stretched along all its length.

Moreover, the upper end is joined to the hose feeding liquid in
the tube. Assume the hose rigidity to be negligible as compared
with the tube rigidity.

Levels H and H; of the surrounding water and liquid in the

tube, respectively, may be higher than the upper end of the tube
(Fig. 1.10). Therefore, the pressure in the surrounding water at

the level of the upper end of the tube is equal to }/(H — L) while
in the inner liquid it is y; (H; — L). The liquid is assumed not to
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exert pressure on the circular end face of the tube. Note that
liquid motion in the tube may give some additional effects [12].
But here its velocity is considered to be small and is not taken
into account. For drilling column, torque and tube rotation are
also not taken into consideration.

Using the aforesaid, the equation of neutral equilibrium

EJd—+—{[P F,(H—L)+Fy(H - L)+
dxt
+F0}/0(L'—JC)—F}’(L—X)'f'Fi}’i(L—X)]E;}=O (71)

may be derived in a way similar to equations (3.3) and (6.3)
Let us introduce the following notations

E=x/H, B=(Foro —Fy+Fy)L2/(E]),
f=(N(O)"‘F}’H“E}’iHi)LS/(EJ)» N@©O)=P-FyyoL,

where N(0) is the real force of the tube tension at the foundation

(x =0), B and 7 are the nondimensional effective weight of

unit length and the tension force at the foundation, respectively.
The equation (7.1) takes the form

d*w [( dw]
=== (v + BE) : (7.2)
det dg g
For both ends hinged its solution must satisfy
w=d*w/dé* =0 (x=0,L). (71.3)

In order to cover the values of f, 7 of practical interest, two
methods were used in [1-6] for solving the stated problem. These
are the power series method employed in §5 and the solution in
the closed form.
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In the latter case, we have
w(&) = B7B[CW(2) + CoWa(2) + C3W3(2) +Ca).  (7.4)

where C;, Cy, C3, C4 are the integration constants and

W)= [ AQac. Wae)= | Bil)ac.
; ‘ y ‘ (7.5)
Wi(2) = [ Ai(¢) | Bi(mydnd¢ + [ Bi(¢) [ Ai(m)dndg.

z2=pBe+ g5,

Ai(z), Bi(z) being the Ary functions of the first and second

kind, respectively.
Under satisfying the conditions (7.3), the solution (7.4), (7.5)
allows one to find the critical value of dimensionless effective

tension 7, as a function of £. In these calculations we have to
use the values of functions Ai(2), Bi(z) for £ =0, £=1 and

2o = rﬂ'2/3, 2 = ﬁ1/3 : 2 rﬁ_2/3. But for large 2o and 2;, the

function Ai(z) rapidly decreases while Bi(2) increases, namely

Ai(2) ~ 1 o-vz,-1a exp(——2—23/2),

20 2 3
Bi(z) ~ Lo-vz, -1 exp(gz?’/z) :
25w 2 3

That was why the solution of equation (7.2) was also found in
terms of series (5.2). Four constants are determined from conditi-
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ons (7.3). This solution allows one to make evaluations for large
argument values. Hence, all values of parameters 7 and f are
covered by calculations.

Critical value 7, as a function of f is given in Fig. 1.14. The
curve is marked by (T) . Buckling may occur if 7 2 7,. Knowing

7., one can find the effective tension force at the lower foun-

(1]

7,0 ()

2000 [2)
1500
1000 1
500 |

0 1000 1500 2000 B

m

-500 |

Fig. 1.14. Critical parameters versus nondimensional effective weight of
unit tube length

dation. But the lift which should be applied to the upper end of
the tube (P) is more useful for practice. It should be large eno-

ugh to prevent tube buckling. In the dimensionless form, this
force is

§=PLJ(EN=17+8. (7.6)
Critical values J,, when buckling may occur, are also shown

in Fig. 1.14 (curve (D)). For stability, it is necessary that 6 = J,.

Two approaches are usually used for evaluating these dependen-
cies. The first one is that the force applied to the upper end should
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be equal to the sum of weights of the whole column and drilling so-
lution inside the tube minus the weight of surrounding water disp-
laced by the column. If there are supporting buoys, their lift is also
subtracted. In the dimensionless form, the first approach means

62p. (7.7)
In the plane 6 — B, this forms a domain where stability takes

place (curve (1)). But this criterion may lead to high lift values.

The second approach is based on the notion that the tube
should be in tension along all its length. The criterion leads to an
inequality

(Foro—FEv:) _
Foro+Fy;,—Fy

62np, n= (7.8)

The curve (2) is given in Fig. 1.14 for 7=0.8. In plane 6 — S,

the second approach may form domains of stability as well as in-
stability. Its application is related to necessity of introducing so-
me security coefficient. The thin area R between curves (D) and
(2) shows parameters for which the tube with tension along all its
length may be buckled under the action of hydrostatic pressure of
internal liquid.

Fig. 1.15 shows the necessary lift at the upper end of the tube
as a function of its length. Plots are presented for all three criteria
mentioned above.

In doing so, the following values have been used [4]:

D;=2r,=0476 m, h=0016 m, y, =785g kg/(m?s),

E=207-10" Nm2, y,=15y.

From (7.8), we obtain 77 =0663. Moreover, the buoyancy of

buoys was taken to be 0.3 times the weight of the water displaced
by the tube.
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As is seen in the figure, the first approach leads to high values
of necessary lift applied to the upper end of the tube. The second
approach allows buckling of stretched tube. It is possible when
the length L > 260 m.

In closing, we present in the Fig. 1.16 the results correspon-
ding to the first six forms of stability loss in the case of both ends

1]
P(H)-105 ]
8 -
[2]
6 e
4
2

[
P
R
100 200 300 400 500 L(M)

Fig. 1.15. The necessary stretching lift at the upper end of the tube as a fun-
ction of its length. Exceeding shown values ensures stability of the tube.
Tube ends are hinged

0
500 1000 1500 2000 B
1
.500 4
2
3
4
-1000 | o 2
T

Fig. 1.16. Dimensionless effective tension force at the tube foundation as a
function of effective weight of unit length. Critical values are presented
for the first six buckling forms. Ends of the tube are hinged motionlessly
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° 500 1000 1500 2000 B
1
-500
2
3
-1000 :
T 6~

Fig. 1.17. Same as in Fig.1.16 but for the case of the lower end clamped and
the upper one hinged

500 1000 1500 2000 B

Fig. 1.18. Same as in Fig.1.16 but for the case of the lower end hinged and
the upper one clamped

0
500 1000 1500 2000
-500
2
3
1000 N
- 6 5
T

~Fig. 1.19. Same as in Fig. 1.16, but for the case of both ends clamped
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hinged [1,3]. Similar results for the cases of lower end of the tube
clamped, the upper one hinged and, vise versa, the lower end hin-
ged, the upper one clamped are given in Fig. 1.17 and 1.18, respec-
tively. Fig. 1.19 shows result for the tube with both ends clamped.

§8. Stability of pipes fastened on movable supports

In actual conditions, in the problem considered in the previous
paragraph, more complex fastening of the ends of vertical tube ta-
kes place. For simulating horizontal mobility of floating means to
which the upper end of the tube is fastened the cases of movable
hinge and movable clamp have been considered {2,5]. Displace-
ments are assumed to be smail as compared with the tube length.

In the more general case, the boundary conditions are

d3w(0 dw (0
g1 220 _ y(g) 220 w() Cpw(0)=0,
dgxo dw(0 el
g O, o0,
dx dx
for the lower end (x = 0) and
3
il O BV dw(L)+CTw(L)=O,
dng dw(L =3
oY e . IR 0
dx? dx

for the upper one (x = L). Here Cg, Cy are the coefficients’ of
elastic resistance to movement in horizontal direction of the lower
and upper ends (linear strings), respectively, rg, rp are the cor-

responding coefficients of resistance to section rotation, N the
actual axial force in the tube.
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Conditions of unmovable clamp are derived from (8.1), (8.2) by
putting Cg = Cy = . Clamped end corresponds to rg=ry =
while the absence of moments to rg = r = 0. The upper end is
freely displacing if C; =0, rp = 0.

For solving the problem, both methods of previous paragraph
are used. Thus, the wide range of dimensionless parameters 7,
is covered.

In the Fig. 1.20, the critical values of nondimensional force at
the lower foundation of the tube 7, are given as functions of

-500

-1000

Fig. 1.20. Same as in Fig.1.16 but for the case of the lower end motionlessly
hinged, the upper one movable (in horizontal direction)

1000 1500 2000 p

-500

(<))
o
S
w
N

Fig. 1.21. Same as in Fig.1.16 but for the case of the lower end motionlessly
hinged, the upper one clamped and movable (in the horizontal direction)
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nondimensional effective weight . The tube foundation is hin-
ged to prevent motion while the hinge at the upper end may move
in horizontal direction (Cg =, rg =0, C; =0, rp =0).
Numbers 1-6 mark data of the corresponding first six eigenforms
of stability loss. The necessity of having values of r*(ﬁ) for the

higher eigenforms is due to the fact that the small initial
deflections of the tube several hundred meter long may lead to
developing elastic line deflections from the vertical not only with
respect to the first form.

Fig. 1.2]1 shows the functionz,(f) for the first six buckling
¢~rms in the case of motionlessly hinged foundation and movable

Fig. 1.22. Same as in Fig. 1.16 but for the case of the lower end motionless-
ly clamped, the upper one hinged and movable (in the horizontal direction)

500 1000 1500 2000 B

i

Fig. 1.23. Same as in Fig.1.16 but for the case of the lower end motionlessly
clamped, the upper one clamped and movable (in horizontal direction)
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clamped upper end. Motion is allowed along the horizontal. In
conditions (8.1), (8.2), Cg =0, Cr =0, rg =0, rp = .

Fig. 1.22 shows the similar dependences for the case of a
completely clamped foundation and movable hinged upper end.

Finally, Fig. 1.23 illustrates the buckling domains for the case
of completely clamped foundation and movable clamped upper
end.

For long heavy tubes, fastening conditions at the foundation
where there is either compression or, along the length, tension,
are of more importance. For the large [, the stability domains

are slightly affected by the conditions at the upper end. For the
hinged foundation, the asymptotic behavior of critical value has
the form

7. =-1028%3,
while for the clamped foundation

7. =—234p5%3.



CHAPTER II

EQUILIBRIUM OF A MEMBRANE
CONTACTING A LIQUID

§1. Linear theory of equilibrium of a membrane

under liquid weight

Consider the planar problem of the equilibrium of a membrane
which is the bottom of some container with vertical rigid walls
and of width 2L (Fig. 2.1a). Thedepth of the fluid in the container

with an undeformed bottom is Hy = S/2L where S is the planar
area of the liquid. Consequently, according to (0.1), the pressure ac-
ting on the bottom is equal to ¥ Hy where y is the specific weight

of liquid (pressure on theupper liquidsurface is assumed to be zero).
When there is no deflection from the horizontal plane, the

membrane is stretched over the walls of the container (x = L)
by a prescribed force 7. The force is related to membrane elon-

gation 24 by the linear function Ty = EA A/L, where E, i are
the Young's modulus and the thickness of the membrane, respec-
tively. The deflection of the membrane w(x) due to the weight of
the liquid and the membrane itself is assumed to be small as com-
pared with its length. Evidently, this deflection will be symmetric
about the vertical middle line of the plane x = 0 of the area S.

Let the pressure on the membrane and its deflection from the
horizontal position be positive in the downward direction.
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Y
a == b)
Ho H : \ ol i
' w(x) . s i
" 2L

* Fig. 2.1. a) The case of given fluid volume in container with the deformed
bottom (the height H is known, H is found from the solution of the prob-
lem). b) The case of known height /=0 (problem degeneration)

The differential equation of equilibrium of the membrane for
small deflections w is

d*w |
TO s i, 0, (1.1)
dx®> -
where the pressure on the deformed membrane is |
px = y[H +w(x)]+¥oh. (1.2)

Here H is the height of the fluid level from the membrane edges
(ZE‘ ig. 2.1), and ¥ is the specific weight of the membrane material.
We shall consider only the case H = 0, which means that the free

fluid surface may not be lower than the level of the membrane

fastening to the walls.
It follows from the incompressibility condition (0.3) that

L
2LHy =2LH+ [wdx. (1.3)
| =l
The equations (1.1), (1.2) may be written in the form

d2w 2 9 2 2 7 2 Yo
g Y vagm=—a " H—afh, & ==, 8= 1.4
13 F—org# T, T (L.4)



50 ' CHAPTER [T

Now H and H are independent of x . Therefore, the general
solution of the equation (1.4) is
@ = Asinax +Bcos ax— H —(ag/a)’h.
Boundary conditions for the membrane are

w=0 (x=+L). (1.5)
Satisfying the conditions (1.5), we obtain
2
:(H+ “0 hj (COS “’“—1). : (1.6)
a cos aL

This solution is valid if cosaL > 0. For aL small as compared

with unity, we have
2 2

_L 2 2\[1 _ B B %
——Q-*(HC( +ha0)( ‘ZQ—J "2—7,—0(]:{}’4*/1}’0)(1 L—2 ’
(1.7)

Consider two cases with respect to values of Hy and H [4].
I. For a given H, (for example, Hy =S/2L, as was

mentioned at the beginning of the chapter), H is unknown. Then
the latter is found from the equation (1.3) so that

al cos aL)
sinal J

2
H = H, aL.cos aL~h ag (1~
a

sin L

(1.8)

The membrane deflection is determined by substituting H
from (1.8) into (1.6) to give

2
W = (HO +- hg—g—j si:iL (cos ax —cos al). (1.9)

For oL small as compared with unity, we have

- 2hyo ;o ( )
H=H, - L, w Hoyy +h 1.1
073 QTO( oY 70) /2 (1.10)
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Since H > O the value of L should be limited. For example,
when the specific weight of membrane y o/ may be neglected as
compared with the weight of fluid column y Hy, the value of aL

should be bounded by O<al<z/2 or 0<y < (7/2L)* TO
because cos aL > 0 should be in (1.6), (1.8).

Under the above mentioned assumption of specific weights, the
case H =0 (Fig. 2.1b) corresponds to the value aL = /2 since
only Hy >0 makes physical sense. ‘Then the membrane deflec-
tion from undisturbed state is
X
o oL

Though Hy, is given, its value corresponding to H =0 cannot be
found in this case. Consequently, the value of the amplitude of
the deflection @ is also unknown.

As was shown in Introduction, this is caused by the fact that
for H=0, h =0 the system (1.4), (1.5) degenerates into an eigen-

value problem, w,, + a2w =), =0 (x = iL). The lowest

w—gHocos

‘eigenvalue is alL = 7/2, and the corresponding eigenfunction is
cos(zx/2L).

‘But if the weight of membrane is not neglected, it follows from
(1.8) that for H =0

2 .
B = h(ao) ( sin L .__1).
a alLcos al

“Since the height of liquid column Hy is positivé and finite,
thentg oL > L, i.e. @l < /2. Now from (1.9) we have

2
w:h(ao) (cosax_l).
o cosal
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L This function is quite determined.
2. Here the depth f is to be deter-

- mined for a known H. The depth H
may be given, for example, when there
is an orifice in the lateral wall of the
container (Fig. 2.2) or if the container
Fig. 2.2. The height of the ~ Of Fig. 2.1a is always full up to its edge.
fluid level H is given (H, In the latter case H is equal to the
is found from solution of  height of lateral walls of the container.
. the problem) The deflection of membrane is here
determined by expression (1.6), and the

volume of fluid in the container by the formula

T e B sinaL +hag( sin L _1) (1.11)
L alcosal al.cos al ’

S = 2LH,.

Note also the singularity of the solution (1.6), (1.11) when the
we1ght of the membrane itself is not taken into account
(hyo — 0). Such a problem has been considered in [7]. Putting
H=0 in (1.6), we obtain w=0 for all ol except for
al= (1 + k) /2 (k =], 2,4,...). As was mentioned above, the
last aL .are eigenvalues of the homogeneous problem. Since
w >0, Hy >0 only the value for £ =0 makes physical sense.
When w and Hy are determined by (1.6), (1.11), an indeter-

minant form of the 0/0-type arises.

It was pointed out in [7] that this drawback of solution is due
to the linearity of equations. The solution of the nonlinear
problem was also given in [7]. In the next paragraph we shall
consider this problem without taking into account the weight of
the membrane [4].
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§2. Nonlinear theory of the equilibrium

of 2 membrane under a liquid layer

Instead of (1.1), we use now the following system of geometri-
cally nonlinear equations of the membrane equilibrium which
also take into account the deflection # along x -axis

d|(du 1(de dw
Eh s de+ dx de}tp*—o

idu l(alw) B
Bh e\ T2\ )‘O'

(2.0

Express1on for p, follows from (1.2) by puttmg hyo =0.
Boundary conditions are
w=0 for x==L,
u=-A forx=—L, u=A forx=1L, (2.2)
where, as in §1, 24 is the elongation of the membrane resulting
from the tension force Ty (4 =Ty L/E h).
Introduction of the second equation of (2.1) gives -
@4_1((&@)2: B
dx 2\dx Eh’

where the constant 7, is the total tension of membrane

2.3)

T, =Ty +T, T is the force which appears in deflecting the mem-

brane from the horizontal (as a result of fluid pressure).
Using (2.3), the first equation of (2.1) may be written in the

form of (1.4) as
’dgw/a’x talw=-aiH, al = 7/T. (2.4)

Therefore, its solution may be presented in the form of (1.6) from
the linear theory (utilizing the condition (2.2) for w) so that
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w:H(M_I), S
cos &, L Ty +T

but here the parameter «, and the additional force T are

unknown.
Integrate (2.3) between O and x to obtain (note that for the

symmetrical problem u(O) =0)
2
(‘iw) dx. (2.6)

iheg) = Eh 2 Vdx
Using condition (2.2) for u, we ﬁnd from (2.6)
, 9
_LL 1 (dw)
4= Tn 2 \di -

Substitution of function (2.5) into this expression and integration
give the relation between H and «,

| 2 L
-H:\/ 2y L (_AEha*J Leus ol e

Eha? J2a,L —sin 20 4L

According to the assumption H >0 the positive sign has been
chosen in (2.7) for the root.
Expression (2.5), (2.6), (2.7) are the solution to the nonlinear

problem (2.1), (2.2). Given y, E, L, h, A, H, we can find a,L
from (2.7) and the components of the membrane deflection from
(2.5) and (2.6) [4]. When H is given, then formula (1.8) should
also be used to determine
Htga.L = Hya, L.

Consider the case of small fluid height H . Since for H =0
(2.7) gives cos a, L =0, a,L=7r/2 (the other roots a,L do
not make physical sense), for small value of H we take oL =
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=7/2— &, where &% <<1. Then, making use of cos(n/2—¢)~ &
sin(z — 2¢) ~ 2&, we find from (2.7) that for small / in the first
approximation

2 9 -1/2 2 |
;WM[“(I‘%H =L 2.8)

Eh

Now from (2.5) and (2.7), the following expression can be
obtained approximately

w _ 2 i l—ﬁQA(l—Ej X
2L 2\ 7n-10¢ ¥uls 7

w% ¥ . 95k
{cos oL~ 5(1 = zsm Eﬂ (2.9)

The deflection of membrane is determined from (2.9) and (2.8).
Thus it depends on the liquid height nonlinearly (in &). The
additional tension of membrane is

2
T=— i A, (2.10)
n“(1-4 &/m)
When H =0 (& =0), (2.9) leads to the finite expression
' 2
2L 72 - Wuls 2L

which has been considered in detail in [7].
Since A > 0 there is a bifurcation point for )/*'— V4 A/ L

Use definitions of A and y, to obtain y = (z/2L)*Ty. This

corresponds to the first eigenvalue found in previous paragraph
from linear solution. Indeed, for small values of deﬂectlon, 1.e

when 7> A/(y «L) = 1, the linear solutlon is valid.
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Note that according to (2.11), in the absence of initial tension
(4 =0,T, =0) the nonzero solution (the deflection of the mem-

brane) exists for any y, > 0. But if the initial tension is present

(4 > 0), the nonzero solution exists only for y, > w2 AL,

§3. The circular membrane under hydrostatic load

Consider a circular cylindrical vessel, the bottom of which is a
membrane (Fig. 2.1). Now we have a radial coordinate 7 instead
of x and 2R instead of 2L . The other notations are unchanged.
Corresponding linear problem_hés been considered in [1,2] under
the assumption that H is known. Here we shall take into account

that H depends on volume (g (Ho = Qo / (ERQ)). Clearly, the

problem is axisymmetric.
In place of (1.3), (1.4) we now write

2
Q—Zg+lw+a2w=—a2H—a2h,
arc T _ (3.1
2 g B i
H=Hy-=2\| wrdr, a° =-—, o L
O. Rzi TO 0 TO

Conditions of fastening to the wall are @ = 0 (r = R).

General solution of nonhomogeneous equation (3.1) has the
form

w = Aly(ar)+BNy(ar)—H - (ag/a)’h,
where Jo, Ny are, respectively, the Bessel's and Neumann's

functions of zero order.
Requiring the solution at # = 0 (B = 0) to be finite and impo-
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sing the boundary condition of zero displacement at 7 = R , we find

2
= (H+ ag h) ( Jo(ar) ~1) : (3.2)

a Jo(aR)

Compare (3.2) to (1.6).
This solution depends on H, H in the same way as in §1.
The following relation between H, M is derived from (3.1), (3.2)

o 92 i
_ a0, |[1_-2 fl(a’”)j
My =H (H + — h] (1 2R To(@R)’ (3.3)

where J; is the Bessel's function of the first order.
For small R, putting

Jo(aR) ~ l—i(aR)Q, I(aR) ~ aR~——(aR)

we obtain , :
2 2.
Hy = H+(“i)[hr +@hj .
8 2)

(94

The solution (3.2) is valid for &R < 2.4. As in §1, the linear
solution for aR = 2405 degenerates, being the first root of the

equation Jo(aR) = 0. As it is seen from § 2, the nonlinear terms
q 0

in the equations of membrane equilibrium should be taken into
consideration to obtain a finite solution for large aR.

Thus given values of the specific weight of the liquid and the
initial tension of membrane, the solution 2R
(3.2) is valid only for R < 2.4,[Ty [y .

Now consider the buckling of the mem-
brane enclosing 'the cylindrical vessel in -
which the pressure is due to the difference Fig . 2.3. The cover of re-

 offiauid levels § icati servoir in the form of cir-
of liquid levels in communicating yes— stlik Teimbians

H

n!h

r
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sels. (Fig.2:3). In this case (positive‘to) are'directed_ upwards),

therefore A Sl
2 g
d w+1w azw——a2H+aOh Lo (3.5)
X dx, i & ' E o, oL
Its, general solutlon is . ..

w = A[O(ar)+BKO(ar)+H (ao/a) h
"where Iy, Kq are the zero- -order Bessel's functions of imaginary
argument. Using boundary condmons to obtaln A and B =0,

one has
:£H_£‘th(1_M), (36

The functlon [y is posmve and increases with increasing its

argument. That is why here, in conttast to the _previous problem,
there is no degenerat1on for any value of the arghment aR .

Let HO, Qo be respectively the helght and volume of liquid

;wh1ch is added to the tube at state w = 0 and under equal Ievels
of hquid in the reservoir and in the tube. Then ' ‘

3 _,I—Iere SO is the tube cross-sectlon area.
Clearly, .the " presented results. can
also betused for analyzing. cylmdncal
containers shown in Fig. 2.4. There are
"‘many air: supporting and pneumatic
- I————1" engineering structures [7] for which es-
Fig, 2.4. Bxamples of con-  timations similar to those presented in
. tainers of fluids .. the above paragraphs are also necessary.
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§4. Interactlon of membrane with: hqmd in closed vessel: -

In previous paragraphs of thlS chapter we have con31dered such
cases of interaction in which there is a free fluid surface in the
vessel. The problem statement somewhat changes if the liquid fills

the closed vessel completely [3, 6].
Assume the weightless membrane covers the 11qu1d in a volume

and is subjected to load from its upper side by. pressure pe
(Fig. 2.5a) of some prescribed value. Membrane is tensed by force
T, and fastened to the walls at x = £L. A small deflection will
be considered under the action of a symmetric load
p. = P, cos(7nx/2L). Thus, the linear problem is to be solved in a

planar formulation. Pressure and deflection are taken as positive

in the downward direction.
~ The total pressure on the membrane is

P« = pe —(po +rw), [CRY
where pg is the constant part of hydrostatic pressure in the liquid

P .

b

a) e

[

Nt
¢ =l == Y=

LIRS B N LS

Fig. 2.5. Examples of dosed container with liquid -
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which in the previous paragraphs has been taken to be zero. Now
it is to be determined along with the membrane deflection w . It
follows from (1.1) and (4.1) that

2 -
dlg*a2w:_pe pO’ a2:_)’_’ (42
The solution of this equation, using the pressure distribution p,
given above, has the form

o . P ) X
w= Ashax+ Bchax — + cos .
Toa®  To(a® +#2/aL?) 2L
4.3)

Imposing conditions w = 0 at x = %/, we have

_ Po (Ch ax j Pe X
W = =] | cos—. (4.9
‘ TOCU2 Ch alL To(CZQ +7Z.'2/4L2) 2L

The pressure p; is found from the incompressibility condition

L ‘
dex'z 0. (4.5)
=1 .
Substltutmg (4. 4) into (4.5), we find

2P (aL)
- ol —thal)|(aL) +(=/2)]
The expressions (4.4), (4.6) represent the solution of the linear
problem stated in the begining of the section. For an arbitrary

symmetric pressure distribution p, the solution may be presented

in the form of a cosine series. The expressions (4.4), (4.6) will then
also be changed.

Eliminating p, in (4.4), we obtain

Po = (4.6)
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P,I* [ 2aL (ch ax 1) - L)Ci]
5 [(az)? +(w/2)*]Lalal - thal)\chal oL |’

As is seen, the relative deflection (w/L) depends on the
nondimensional parameters P, L/Ty and ol = L+Jy /T .

It is of interest to make comparison of the pressure (4.6) cons-
tant over liquid volume with its value when the membrane is chan-
ged for the rigid piston slipping without friction along the walls
of the container (under the same external action). Clearly, it is -

P, % X
Po = 22 COS—Ld)C = 2 Pe. (47)

The value aL <<l corresponds to the large tension 7 of
membrane when its width L is small. Therefore, it follows from

(4.6) that (7/2P,)pg = 12/ 72 =1216, which is somewhat higher

than by (4.7). Thus, under equal loading of.rigid piston and
membrane the pressure in liquid beneath them differ by more
than 21%. When aL <<1 the nondimensional diflection is

2 2
TO = cosﬂ—i[l _gc_) : 4.8)
4P, 2 2L m% I

The downward deflection by the value (1 —3/7) takes place in

the center while the maximum deflection upwards is at the points
x/L =4074. With increasing al, the function (%/2P,) po

smoothly decreases up to 1.210 for oL = 1.0 and then also smoot-
hly increases. For example, (7/2P,) py = 1379 for aL =14, i.e.

the pressure increase beneath the membrane amounts to ~ 40%
(as compared with the case of a rigid piston). When alL >>1 we

‘obtain from (4.6) that the value of py coincides with that by (4.7).
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Now let us consider the same problem except there is a liquid
1aye1 from the upper side of the membrane (Fig. 2.5b). And the
specific weight of ‘the liquid in the space under the membrane.
Then the expressxon for total pressure (4. 1) will not have the term
—ywW smce m th1s case the membrane is subjected to the pressure
)/(H +w) of the upper l1qu1d layer Here H is the height of the

upper 11qu1d Iayer measured from the membrane edges (the
pressure on the free surface is assumed to, be zero). According to

(1.3), H= HO due to the: 1ncompress1b1lxty condition for-the
lower liquid. Thus, the total pressu1e on the membrane is
b= petyH—po-

Thus instead of (4. 2) (4.4) and (4.6), we shall have

- B P e

+

L ' : 9ud h o e Bugs
e (po }’H)L 4PL s T 5 S

po 24 7 +yH
| ~7r

Expressxon for w.will co1n01de w1th (4. 9) if pO is eliminated in

(4.9). But pg itself is here.also: -dependent on. y H . The solution

(4.9) remains vahd also for the case when the upper layer is ex-
tended ‘without limit (Fig. 2.5¢). It is due to the fact that there will
be no term —yw in the’ equatlon of the membrane Whlle the

1ncompre581b1hty condmon will hold m the same form (4 5) 3
" If the space under the membrane is connected to the upper
layer of liquid (Fig. 2. 5d), the condition (4. ) sy not’ used. The
space undet membraiie is not closed. In this case the integral in
(4.5) allows one to determine the volume of liquid displaced from
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the lower space. The constant.part: of the- hydrostat1c pressure is
po = yH . Therefore, in the case under coffsideration S

_d wo _Pe e : (4.10)

: Vdxd T T oL »
Taking in: (4 10) the prevrous dlstnbutron p e(x) and satisfying

conditions of w=0 at x =+L, we ﬁnd
1 e

e O 4.11
‘ 7772710‘_ 2L TR S TR e ( ‘ )

Thus here the distribution of deflecfion w .along the membrane
mimics the shape of the given external load. ‘ ;
Consider for comparison the linear problem of deﬂect1on of a
membrane stretched over the supports and contacting with the
surface of unlimited liquid (Fig. 2,5¢). Assume the external pres-
sure to be same as above. Then the pressure on the membrane is

Dy =D, — YW, while po = 0. Smce the hquld 1s unhmlted the
condition (4.5) is not valid. Here equatxons (4 2) and (4 4) are
valid for pg =0. As i is seen from (4.4), in this' case the membrane

deﬂeetlon is also dependent on the liquid dens1ty ( ¢ = =i / ]‘O)
§5.'Stability of menibrane between Tiguids
of different ,den_sity

_ As it follows from (4.9), for, F’e = O the constant part of’ the

pressure under the membrane is po = yH , rts deﬂectlon w is
absent. Consider this problem in’' more detail’" assummg that” spe-
cific liquid weights ‘are different. in ‘the:lower (y;) and upper

(72) spaces. Moreover, ‘there is: no exterrial pressure (p, = 0)
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and the lower space is closed (Fig. 2.6a). We restrict our consi-
deration to the linear problem.

a) y b)

._::.."..l

ol

c) —

Fig. 2.6. Examples of stability problems of the membrane between liquids of
different specific weights

The pressure on the membrane deflected by w(x) is

pe = ~(po +710) +72(H +w). (5.1)
Since in this case P, = 0 and, according to (4.9), py = yH =
=y oH, it follows from (5.1) that we obtain p, = (y9 — ¥ )w.
Here instead of (4.2), we have

2 —
—d120)+a2w=0, a?=t2"11 5.2

dx To
Consider the case when the heavier liquid is in the upper layer
(}/2 B 9, a2 > O). Using condition (4.5) for closed containers

with incompressible liquid, we obtain from the solution of equation
5.2
w = Asinax+ Bcosax (5.3)

that
BsinalL = 0. (5.49)

Boundary conditions w = 0 (x = £ L) give

AsinalL + Bcosal =0,
AsinalL —-Bcosal =0
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or

Bcosal =0, Asinal =0. (5.5
The first equation of (5.5) and the equation (5.4) are valid

simultaneously only if B = 0. Then, putting A # 0, it follows
from the second equation of (5.5) that sinaL =0 whence

alL =0, 7,2x,... Consider the first nonzero root aL = 7. The
solution (5.3) takes the form
w = Asin(zx/L).
Hence, on reaching the value
2 2
yo-yi=n" T/, (5.6)

the membrane may deflect from the planar nontensed state of
equilibrium creating two halfwaves along the width (with node at

x = 0).
If t)he lower liquid is heavier (y| > y9) the solution of
equation (5.2) has the form
w=Ae* +Be™®, a’=(y,-y9)/Ty-
It follows from the condition (4.5) that
(A+B)(e™ -e ™) =0.

Since @ =0 (y| = 79) is not considered, we have A = —B.
Taking this into account,.the fastening conditions give

A(eaL _ e—aL) =0

or A=-B=0.Hence, for y| >y there are no deflections of
the membrane from its plane equilibrium state. Since the solution
(4.7) valid for y; =y, gives w=0 for P, =0 one can also

write | 2y 9 .
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These results are also valid for the case when the lower space is
closed while the upper liquid layer is extended without limit
(Fig. 2.6D0).

In Fig. 2.6¢ the liquids of specific weights y; and yo are

extended without limit from both sides of horizontal rigid screen
a part of which is a tensed membrane of width 2L. Because the
liquid areas are not limited, the condition (4.5) is not imposed.
Small membrane deflections are described by the equation (5.2).
The conditions for the membrane edges (w =0 at x = £ L) give
the equations (5.5).
Unlike the problems described in Fig.2.6a and Fig. 2.60,
equations (5.5) may here lead to two possibilities:
1) A#0, B=0 and hence sinal =0, whence alL=
=0, 7, 2x,... Fortheroot aL = 7 we have
2
szsin”Tx, 72—71=%
which coincides with the solution obtained above.
) A=0, B#0 and hence cosal =0 whence al=
=0, 7, 27,... For the first root we have

, (5.7

2
X T,
w=Bcos==, yo-y;=—2. (5.8)
L 4l*
In the first case the membrane deflection from the tensed
planar state can occur with two halfwaves. In the second case a

deflection may occur with one halfwave if the difference yo —

becomes equal to (7[/2L)2T0. It is less than that in the first case

by a factor of 4. So, when yo — ¥, is gradually increasing we
come to the latter variant of the membrane behaviour.
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§6. Determination of membrane deflection

in stability problem

In the previous paragraph the critical parameters (5.6), (5.7),
(5.8) and corresponding forms of membrane deflections from the
planar state were found. But the amplitudes of these deflections
remained unknown. To determine them, it is necessary to use the
nonlinear relations. Let us turn to the set of the nonlinear
equations (2.1).

In order to somewhat diversify the problem statement, assume
the absence of the initial tension of the membrane. Since T, = 0,

then according to (5.6), the plane form of the membrane is unsta-
ble for any positive difference between specific weights of the up-

per (¥ 5) and lower (y) liquids. Now we present the results of [3].

ForA=0, Ty, =0 and T, =T, the equation (2.3) takes the
form

Eh " dx ' 2\dx @1
Such a statement implies that the membrane can be in tension
only due to its deflection from the planar form.
The first equation of (2.1) or the equation (2.4), according to
(5.1), will be written as

2 B
AW, g29=0, o2 =211 6.2)
dx? T
Equations (6.1) and (6.2) have the solution

w = Asina,x+Bcosa,x,

T _ du l(dw)Q

o
2

2
j(Acosa*x—Bsina*x) dx, (6.3)

Be = T/(Eh) .

= B.x+C~
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The incompressibility condition for the liquid in lower closed
space (4.5) gives

Bsina,L =0. (6.4)
Boundary conditions # = w = 0 (x=2%L) lead to
Bcecosa,L =0,
Asina,L =0, (6.5)

4C - ABa,cosa,L =0,
8f.L - 2a2L(A% + B%)+a, (4% - B%)sin2a.L =0.

Equations (6.4) and the first equation of (6.5) may be satisfied
together only if B = 0. Then, putting A # 0, we find from the
second equation in (6.5) that sina,L =0 whence a,L = nr

(n =0,1,2,...). Hence, the membrane tension force is
L )2
=|— - = b2 ... 6.6
Tn (l’lﬂ' (72 }/1) (n ’2’ ) ( )

It follows from the third equation in (6.5) that C = O while the
last equation gives

2
A2=_AT" 6.7)
Eh(yo - 71)
Using (6.6), (6.7), the expression for the normal deflection may
be presented in the form

21> [Y2-71 .. nmx
= & sin = L 6.8
n=r e\ g o ) €Y

Here the signs t* indicate an equal possibility of deviation
according to an asymmetrical form of the right or left halves of
the membrane.

The planar shape of the membrane and the interface of the liqu-
ids is always unstable for y; < y, and stable for ‘y; > y,. This
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is valid in the absence of initial tension of the membrane (To i O).

For vanishingly thin membrane these results are obvious. It is po-
inted out in [5] that a thin layer of mercury flows down from the
water surface by fine jets. A Rayleigh—Taylor's instability occurs.

It follows from (6.8) that the planar shape of the membrane is
unstable for any number of halfwaves 7. Moreover, the deflec-
tion amplitudes and the tension force (6.6) rapidly decreases as 7
increases. Analysing the system energy, one can conclude that the
larger n the more severe the instability of the system.

But there is an upper limit for the number 7. For large values,
no matter how small the thickness A may be, the bending rigidity
begins to exert its effect. To estimate the upper limit of 7, one
can take approximately

Dd4 W/dx4 +(}/2 ""}/l)w —1i

Substitute here the solution in the form w = Wsin(nzx/L) to.
obtain the upper value of halfwave number

oL(r2 -1\
n, z—ﬂ—(2—D—l) : (6.9)

If ;/2—)/1=0.6-10_4kgf/cm3, h=00lcm, L=25cm,

g = 90 kgf/cm3, the upper limit for n, according to (6.9), is
n, ~95.

An experiment was made for a square oblong glass vessel [3].
The liquid under the membrane was water (y =103 kgf/cm3 ),
on the surface of which a thin rubber of thickness A = 0.0lcm
was slightly stretched and fastened to the edges of vessel. Then a
silicate glue of specific weight y o = 141072 kgf/cm3, was pou-
red along the wall by a fine jet. A deflection in the form of two half-
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waves occured. The state was stable. After being somewhat de-
flected and then released, the membrane oscillated and took its
shape of two halfwaves. For a large forced deflection, a sinusoid
in antiphase may occur, which means that the deflection with the
opposite sign in (6.8) is realized. In the given experiment, stable
deflected states in the form of many waves were not observed.

When water (7o = y) was poured instead of glue, the plane sha-

pe of the membrane was stable.

All results presented in this paragraph were related to the
scheme shown in Fig.2.6a. Moreover, we used the incom-
pressibility condition (4.5) for the liquid in the lower closed space.
If this space is filled with a gas, the condition (4.5) is not used.

Let the gas pressure under the membrane in the planar state be

Po =y oH . The pressure is assumed to be kept constant in the

course of deflecting the membrane from its plane state. Fig. 2.6¢
also leads to the same problem.

So, now the equation (6.4) is not valid. Putting B =0,
A#0,sina,L =0 in (6.5), we come to the solution (6.6), (6.8)

considered above. If we put A =0, B#0, cosa,L =0 we
obtain a,L = nz/2, where n =1,3,... From the last two equa-

tions in (6.5), we find C = 0, B? = 4,8*/05* . Using definitions
of B, and a, , we come to the following expressions for the
membrane tension force

L 2
T =(,21—”) (r2-71) (n=13..) (6.10)

and for the membrane deflection

4L2 Y2 — V1 . nax
W, == 1{ sin—— (n=13,..)). 6.11
n n27z'2 El 2[ ( ) ( )
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- Arcomparison of (6.10), (6.11) to (6.6), (6.8) shows that the
deflection and tension forée:-according to the first symmetric form
are respectively two and four times as much as those according to
the first asymmetric form.

§7. Nonlinear deflection of membrane

under concentrated action

So far the equlibrium of the tensile membrane has been
considered in this chapter. But many materials have large rigidity
in tension. In studying - their behaviour under . action of
predominant transverse force, their tensility may be neglected.

Fig. 2.7. The nontensile weightless plate infinite in size under action of for-
ces2Pand T

Such problems will be considered in detail in chapters V and V1L

“In this paragraph we present the solution of the equilibrium
problem of a nontensile membrane (film) infinite in size, resting
on the liquid surface, which is under action of forces distributed
along line x" =0 (Fig. 2.7). Their intensity is 2P’. The film is
assumed to be tensed along the axis x' at infinity by the uniform
force 7" The weight of the film is neglected,

In §2 of this Chapter, for solving the equilibrium problem of
the tensile membrane the system. of nonlinear equations has been
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used. Unlike that solution we shall now consider the arbitrary
large deflection of the nontensile infinitely long film. In the
chapter IV the same problem will be stated for the flexible plate.
That is why the bending equation will be derived here, taking into
account the bending rigidity. Since the interaction problem is
two-dimensional we consider the beam/band under the concen-
trated force 2P’ . In doing so, we follow [9].

The local curvature is assumed to be proportional to the local

bending moment M = Dd@/ds’ where @ is the angle of the

element rotation, s’ the Lagrange coordinate (8’ = O under the
force 2P'), D, M the bending rigidity and bending moment,
respectively. The origin of Cartesian coordinates x’, 2’ lies on
the undeformed surface of the plate.

The pressure from the liquid side is p = y2'. Moreover, we
have

£i—x—'='cos¢9, 4—2—’=—sin9, (7.1)
ds' ds'
x'(0)=0, 2'(0)=wy, 2'(x)=0.

Equating the sum of moments to zero, we obtain

2 s |
p4 §= yjz'cosé?ds’—P' cosH+[T'—1(z')2:|sin0. (7.2)
ds’' 0 2

In what follows in this paragraph, we use D = 0. Dividing the
linear diménsions by (7T"'/ y)l/ 2 we obtain from (7.1), (7.2)

(u—a)cos@+(l—%zz) sind =0, a=P[T', (7.3)
dﬂ:zcos@, —d—£=c050, 4z _ _ging. (7.4)
ds ds ds

Here an additional function u is introduced.
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Boundary conditions have the form
u(0) = x(0) =0, 2(0)= 1wy,
wewo)=a, 6(o)=2(x)=0. (7.5)
The nonlinear problem (7.3)—(7.5) is interesting in that its
exact analytical solution can be found. Given a, one may
determine @, u, x, z, w.
Differentiation of (7.3) with respect to s gives

(u- a)% = zsiné. __ (7.6)

Using the expression
dl _ dfdu _ db
ds duds du
integrate (7.6) to find « = o + Csin @ where C is the integration
constant. Then it follows from (7.3) that

%zz =1+Ccos@.

2cosd,

Conditions at infinity give C = —1. Hence

40 _ = 2 _9cosd = —2sing. (7.7

ds
The subsequent integration leads to the equation
tg(6/4
s=-In —gu, (7.8)
tg(6o/4)

where 6, is the value of & for s=0. From the equation

u=-a-sinf wehave 8y = arcsina.

The parametric form of the membrane deflection is found by
integrating the equations (7.4), (7.7), (7.8) to obtain

=_]n_tgw/_4)._2cosg+2cosgo—, 2=25ing—. (7.9
tg(6o/4) - 2 2
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Fig. 2.8 shows the variation of the deflection along the x-
coordinate for three values of parameter «.

The relationship between the load parameter « and the
membrane deflection under the concentrated force has the form

Wy = 25in(8y /2) = V2 — 21— a? . (7.10)

As is seen, a can not be greater than unity. Hence, we should
have P' <T'.

The maximum value of the membrane deflection under the

load 2P’ is attained for o =1. Then wy = V2 while the dimen-

2 3

0

pa

Fig. 2.8. Forms of large deflections of the nontensile film, infinite in size, on
the liquid surface

sional value is w}) = wy/T'/y =wy[P'[y or wh =+2P'[y.
The film and the load of weight 2P’ "sink" if & >1 (P’ >T').

The membrane deflection in the horizontal direction at a large
distance from the coordinate origin is

s — (x)s_}oo~2 2cos—— 2 - \/2+2\/1—~




CHAPTER III

EQUILIBRIUM OF A PLATE
CONTACTING A LIQUID

§1. Bending of a beam resting on a water surface

A beam with specific weight y rests on a liquid with infinite

extent. The liquid specific weight is y . Evidently y5 <y . The

depth of submersion H of the lower surface of the beam with
dimensions L, b, A is found from the equilibrium condition of
buoyancy force and body weight to be

H=hyy/y. (1.1
There is no bending in this state.

If some force P acts in the center of the beam (Fig. 3.1), then
bending occurs. We are to find the maximum value of P under
which liquid does not reach the upper beam surface, as well as the
corresponding stresses and elastic deflections arising in the state.
The latter are measured from the equilibrium state with submer-
sion depth H. The deflection w is positive in the downward
direction. We present a solution of the problem, following [2].

The equation of beam bending is
El d*w/dx* =g
and the distributed load ¢ consists only of the buoyancy force of
the liquid (—ybw) since the beam weight has already been taken
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into account in determining the submersion depth (I 1). The equ-
ation may be written in the form

d*w 4 }’b
== +405%w =0, 46 1.2
dx? El (-2

Krylov's functions may be used for the solution. The table of
these functions and their derivatives is given below [2]

n Y,.(8%) Yy (B2) | V(Bx) | Y(Bx) | V()
1 | chBxcos fx —487, | -4p%Y, | —-48°Y, | —48%Y,

2 %(chﬂxsinﬂx-i—shﬂxcosﬂx) BY, | -48%7, | -48°Y, |-4p%Y,

3 éshﬂxsinﬂx | 8% | g2y, | -4p%Y, | -4p%Y,

4 :11_(Ch Bxsinfx—shfxcos fx) | pY, . ‘ﬂa v, |-48%7, _

With wy, wg, My, Qg denoting the deflection, bending

angle, bending moment and transverse force at x = O, respec-
tively, the solution. of (1.2) by the method of initial parameters
may be presented in the form

M
02 Ys(fx)+

W= ti(0)+ L1 ()

d
Ef;S Y4(/Bx)
(1.3)

In F1g 3.1 the origin of coordinates is taken at the left end of
the beam. Here My =0, @y =0. Values of w, and @} are
determined from the symmetry conditions ‘

wp=0, Q=P2 (v=1/2). (4
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According to (1 .3) and the table given above, we can write
= —4wo fY4(fr) + wphy (Bx),

w" = 4w, YQ(ﬂx) 4woﬁ2Y3(ﬂx)

Satisfying the conditions (1.4), we find the deflections involved in
(1.3) and the bending angle at point x = 0, i.e.

o p (ﬁL) P (ﬂL)
Whn = Y A = Y. ’
° epigdy N2/ 0 "5 3

(2 (2 (2.

- Substituting these values into (1.3), we determine the expres-
sion for deflection from the equilibrium state under the action of
force P as

ey $P o rdd
o 2 L2 = = b

X

I

Fig. 3.1 Beam on the liquid surface under the action of force P

z I [ “3.280"1 X

// \y 5420kGem

M £ '
| | g
Fig. 3.2. Diagrams of deflection and bending moment arising under acti-
on of the force P
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vl (B v+ vl B )Yz(ﬂ@} (.5

This solution is valid in so far as the upper beam surface is not

in water, i.e. when [ +w@ < A. From (1.5) the bending moment
and stresses are found in the usual fashion.

In[2] the following data are taken: y o = 0.6 gf/cm?, | ¥ =1 gf/cm?,
E =10° kgf/em3, L=10% cm, b=20 cm, A =10 cm, P = 50 kgf.
The depth of the uniform submersion without bending is
H =6 cm. The coefficient A=234-107" em™, ',BL/2=1.17.
Using the table of functions Y, given above, we find
¥(117) = 069, Y(l17) = 110,
Y3(117) = 067, Y4(117) = 0.26.

Fig.3.2 shows the distribution of deflection w along the beam.
It may be seen that its total deflection is 1.38 cm (in addition to
the submersion of H =6 cm due to its own weight). Moreover the
force P causes bending with a maximum deflection in the center.
Its value is (3.28 — 1.38) cm = 1.9 cm. The diagram of the bending

moment is also presented in this figure.

§2. Bending of a circular plate under liquid weight

The problem to be solved here is similar to one from §3 of the
previous chapter (Fig. 2.1). The only difference is that the circular
bottom of thickness A, of elasticity modulus E and Poussons
ratio v is taken as a plate instead of a membrane.

Its own weight is neglected as compared with the liquid loa-
ding. Liquid level / in the deformed state of the plate is assumed
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to be known. Under such an assumption the problem was consi-
dered in [1]:
The equation of axisymmetric bending of plate has the form

4 3 2
D(d w_ 2dw_1dw, 1 dw) w+ H 2.1
dr* f dr® 1?2 dr? % dr 7 ) @b

Introducing the following notation for the ratio of specific
11qu1d weight to stiffness of the plate '

N T

and finding the solution to the (2.1) in the class of cylindrical
functions, we have

W = Cljo(ﬂf) . s CQJO(ﬁf) + CSNo(ﬂT) +‘C4K0(ﬂf) - H. (23)

Here Jy(2), No(2), Ip(2), Ky(2) are the conventional notations

for zero-order Bessel's functions of real and imaginary argument.
For a continuous plate (without a hole in the center), the

constants C3 = C4 = 0. Consider two types of conditions for

fastening the plate to the walls. The edges are clamped, so that the
deflection and slope are zero

w=dw/dr=0 (r=R) (2.4)
or they are freely supported (deflection and bending moment are
Zero)

2 , : : :
w=0, Q_erzd_w:o (r:R), (2_5)
dr2 r dr

Requiring the solution (2.3) to satisfy conditions (2.4), we find
T VAR 1o(5r) ~ 1(BR) () ~ A(BR)]
A(BR) = Io(BR)L(BR) — 1\(BR) Io(BR),

W =
(2.6)
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where /|, | are the Bessel's functions of the first order.

‘Given w, we may determine values of- all plate stresses by
common formulae. The derivations are valid only if the
determinant A > 0. As is known from §1,2 of Chapter II, this
restriction is due to the assumption of model. "Critical" value

PR =319 is obtained from the equation A(ﬂR) = 0. Utilizing
notation (2 2), we also find the value of the radius

| R =319/ = 319(D/y)"*
up to which the solution (2.6) is valid.
For a metal plate with £ =2.10% kgffem?, v =03, h=2 cm
the bending stiffness is D =146-10° kgf-cm. Specific weight of

water is ¥ =107 kgf/oms. Therefore ﬁ_,l, =1956 cm, while the
"critical" radius is equal to 624cm. Let the plate radius ‘be
"R =1956 cm. Then, from (2. 6) we obtain

.
ﬁ =05711/, (E) .+ 044471, (E) -1,

By thiss formula, the deflection w =0 for r=R and

w = 0.0158H in the plate center (r = 0).
If we drop yw in the right side of (2.1), i.e. we neglect addi-

tional load depending on deflection, it follows that
w _ 7V R* ( r? )2 |
=% 1- ; 2.7
H 64D R?
The deflection in the center calculated from (2.7) utilizing the
numerical data presented above is w(r=0)=0.0156H .
The slight difference between exact and approximate values in

this example is due to the high plate stiffness and relatively small
radius. The difference in bending moments and stresses is larger.
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In the case of a freely supported edge from (2.3) and (2.5) we
have the following constants

G = (ﬂRA)[ (ﬁR)+_fo(/5R)

H(l-v) H
oA 0(BR) + L1 (BR). 2:8)

A= L= 11o(pR)H(BR) ~ 1o (R (BRI + 2o (PRI (AR)

Substituting these into (2.3), we find the deflection value. It follows
from conditions A(SR)=0 that SR =157. This value is one half

of that in the case of the clamped edge.
Using numerical data presented above, we obtain R =307 cm.

The expression for deflection is

w r r

Cy =~

According to this formula, the deflection in the center is
w=0.0612H .

Neglecting the additional load gw we find, instead of (2.7}, the
following approximate value '

7’R (l 2 )(5+v r2) o 5
9
H 64.D RZ2/\1+v R? . .

From (2.9) the deflection of the plate center is w = 0. 0637H

§3. Bending of a circular plate covering cavity with liquid

Consider the equilibrium problem of an elastic cover of a cylin-
drical vessel filled with liquid (Fig. 2.3). This problem is similar to
one in §3 of Chapter II except now the cover is a cm:ular plate [1]
rather than a membrane. :
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In the right side of equation (2.1) the loading term is y(H —w).

Here w is supposed to be positive in the upward direction. The
solution of this equation for a continuous plate has the form

w = Clo(fri) + Colo(pri=i) + H . 3.1)

Cylindrical function of complex argument may be presented as

follows
I (zfﬂ) = u,(2) iv,(2).
The functions ber, (2) and bei,, (2) are lals‘o used in place of #,,(2),

v,(2) . In what follows, we shall use these both denotations. -

Derivatives of functions #, and v, are

(@) =~ -u), W)=+ u),
uf(2) = vo +T;z—.(u1 —9), ..

Then (3.1) may be written as
w = Cyug(Br) + Coug(pr) + H, (3.2)
where C|, Cqy are new constants.
Satisfying the conditions (2.4) for the clamped edge, we obtain

ClA =—-H [ul (ﬁR) + 0y (ﬂR)] 3
CQA = “H [ul(ﬁR) - Ul(IBR)], (33)
4 = ug(BR) [ (BR) ~ vy (BR)] — vo (BR) [t (BR) - v (BR)]-

Thus, equations (3.2) and (3.3) represent solution of the
problem stated. It is of interest that unlike the previous paragraph

the equation A(fR) =0 does not have real roots. Therefore the
obtained solution is valid for arbitrary values of parameter SR .
Particularly, the critical plate radius does not exist.
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For numerical data from previous paragraph the expression for
the deflection (to be more precise, for the lift since @ > O in up-
ward dlrectlon) may be written as

= _1—09846u0(R) +o123500(R)

In the plate center w = 0.0154H .
In the case of freely supported edges we find from (2.5) and
(3.1) that

6= fuo ()~ L= fu(pR) (R

o= R+ L= (R 00RO

Lio(BR)F - [eo(R) + { L o(pR)

<[ (8R) + (R -0 (BR) [ (PR) ~ (BRI}
And here the equation A(,BR) 0 also does not have real roots.

Consequently, the solution (3.2), (3.4) is valid for any value of SR .
Fot the numerical data of §2 it follows from (3.2) and, (3.4)
that the deflection is

77,— =]~ O9388u0(R) + 0303800(]2)
In the plate center w = 0.0612H .

§4. Hertz's problem of a floating plate
p

Tn one of the papers of German Physicist Hertz [3] the equ111b—
rium of a circular plate is considered with load P in its center.
‘The plate floats on a liquid surface. In Dinnik's work [1] this prob-
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lem is solved, using cylindrical functions, which made it possible tc
simplify all manipulations. Consider this solution, following [1].
We shall use the equation (2.1) in which it is necessary 'to take
distributed load yh rather than yH . Here y, A are the speci-
fic weight and plate thickness, respectively. Moreover, the load
P& (rg —r) is acted over the area of small radius 7y in the center
of the plate, where 6 =1 for r <ry and § =0 for r > #;. So,

the equation of axially symmetric bending of circular plate has
the form

d'v 2d% 1 d%w 1 dw
D=+ s "5 25 -
dr Far® p*dr? 72 0f .
= yoh—yw+ Pé(ry —r). (4.1)
The deflection w is positive in the downward direction.

The solution of the homogeneous equation (3.1) may be writ-
‘ten in the form

w = Cyug(pr) + 6200 (Br)+ Csfo(Br) + C4g0 (,Br)
A= (r/D)",

where ug, vy are functions introduced in the previous paragraph.

“2)

Functions fy, go are introduced in the same way

Hn(z\/}—i) =[n(2) tign(2), n=01..., |
where H, are Hankel's functions which vanish as 2—> . Values

of the functions uy, vy, fy, g are given in reference books on

mathematics.
Consider first the solution of the problem with neglecting

plate's own weight yo/A. It may be shown [1] that under a force
P concentrated in the center, the constants in (4.2) are

Cs = P/(4p'213), Gy =0, (4.3)
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the constants Cl, Cy are determined from condmons on the outer

contour 7 = R .
In the case of an mﬁmtely large radius R we shall have

C, =0, Cy =0 since the functions #,, vy do not vanish for

r—> oo . Therefore, according to (4.2), (4.3), the deflection of plate
will be .

4ﬂ2D fo (Br). (4.4)

Tables in reference books may be used for deflection calculati-
ons. Asymptotic formulae are available for large values of the ar-

guments (fr > 6). With increasing argument the function fy(8r)

is a decaying oscillation. Its first few roots are 3.92; 8.33, etc. The
subsequent roots may be presented in the approximate form as

(Br), =72 (n-1/8), n=0,,...
Waves have the form of concentric circles around the point of
load application. For n >> 1/8 the distance between neighboring

waves is 7v2/B = (4D/ y)l/ %, The amplitude decreases quite
rapidly. At the loading point (r = 0), the maximum deflection

downward takes place and fy(0) =1/2, w@(0)= P/ (8,6’2D). In

'moving away from the center along the radius of the plate, the
deflection decreases. When fr = 3.92 the deflection vanishes.

Then the plate surface becomes higher than the mean level of the
liquid. After that the plate deflects downwards again and when
pr =833 the deflection becomes w = 0, etc. :

For an ice cover, if E=27600kgflcm?, v=1/4, h= 1 cm,
y =10" kgf/cm3 the deflection under load point is w(0)=
=0.08P cm/kgf. For A =10 cm, ©(0) = 0.0025P cm/kegf.
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In the case of a plate of finite radius R, floating on a liquid
surface, it is necessary to impose the edge conditions. Suppose
that the edge is free, i.e. the bending moment and transverse force
are equal to zero |

d’w v dw | d (a’ W ldw) _
+ = =0, = =0 (r=R). (4
dr® r dr dr\dr? rdr/) ( b 13

When the plate weight is not taken into account the constants
Cs, C4 in (4.2) are, as before, determined by (4.3). Constants Cj,

Cy are found from (4.5) to be

[(1 —rl)jv})2 V2

G4 = (A + g10) + oy —v1) — 4o (A +§1)}

Cod =— 4;D [(1 —,81;)2\/5 (ulgl —-yfi) + |

| | 9 (4.6)
+0o (4 + &) — 8oy ’H’l)}

(=2 Vo
PR
All the functions 4y, Vo, Lo, Y, U, fi» & here are for the

argument fr = fR.

When the radius K is small (m comparison with the half wave
length of the deflection) the deflection @ on the contour is posi-
tive. Since we have taken the positive values of @ in the down-
ward direction, it follows that in this case the edge goes down lo-
wer than the liquid level. !

Let us introduce the following criterion: if the edge is lower
than liquid level the plate cannot be floating and to ensure the
buoyancy of the plate, the deflection w has to be negative for

4= ( 1 +Ul)+u0(ul +01) —vo(# —vy).
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r = R. This condition together with (4.2), (4.3), (4"6) gives the
following equation
(1- )2
SR
2 2
H{ +g1)(u0 +Uo) +( + ) (foo + &o%) —

~(w — ) (fovo — goto) =0 4.7)
Here again all the functions u,, v,, f,, @, have the argument
PR . It was found [1] that the first root of this equation is
PR =264 (note that in the case of the infinite plate the first root

of equation f (,BR) =0 from (4.4) is equal to 3.92). The second
root is SR =712 The following roots are determined by

(BR),, = z2(n—3/8), n=34,..
Consequently, if the plate radius is less than 2,64/8=

[fo(uf2 +9f ) =g (he + &) ~vo(fioy - glul)] +

= 2,64(D/ 7/)1/ * the plate together with load P does not have an
equilibrium state on the liquid surface. The equilibrium is attai-
ned when R > 2.64/5. |

- The analysis becomes more complicated if the first term in the
right side of (4.1) is taken into consideration. Allowing for the
corresponding partial solution, we have

£ N Yol ‘
ZQJZCluO ﬂf +CQUO ,Bf i fo Bry+——. (4.8)
(8r) O+ () + 22
When determining the constants C;, Cy by (4.5) the influence

of the last term in (4.8) is absent since it is independent of r.
Therefore the expressions (4.6) are valid in this case as well. A

total plate immersion of A /y takes place as compared with the

case of weightless plate.
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Equating (4.8) to zero, we obtain an equation similar to (4.7)
for the case of a weightless plate. According to (4.7), the least
value of SR for which the plate equilibrium on the water surface

is possible was mdependent of load P. Now 1t depends on both
P and yqh.

Consider an example in which E= 2‘106kgf/cim2, v=03,
h=01cm, y =1072 keflem?, y,="7.8-107 kgflem. If the plate
weight yoh is neglected, the least radius of a floating plate is
independent of P and equal to 54.3 cm.

When the plate weight ¥oh is taken into account the solution
depends also on P. For example, if P =100 kgf this radius is
R =272 cm. For P =10 kgf the equation does not have real po-
sitive roots. Consequently, the plate with load P =10 kgf cannot

be floating. The same is valid for smaller P .
Thus, a circular plate of a certain radius with a load in the

center floats while without a load or with a load not large enough
it goes down. This is due to the larger immersion of the central
part of the plate as compared with its perlphery and to the
corresponding displacement of the liquid from under it.

§5. Bending of a circular plate under concentrated load

A thin circular plate covers a container with liquid. There is
also a liquid layer over the plate. Axisymmetrical bending of the
plate takes place under the action of concentrated force P ap-
plied in the center of the plate. The case of pressure by rod
(Fig. 3.3) will also be-considered. The force of this action will be

denoted by q(r).

As is shown in chapter II, in the presence of liquid layers from
the upper and lower sides of a membrane (or a plate), the term
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yw is not involved in the expression of pressure on the membra-

ne. The expression will include it if there is some difference in
densities of layers above and under the membrane. Assume that a
circular plate is clamped along both external ( = a) and internal
(7 = b) contours. |

Let positive deflection and pressure be directed downwards.
The equation of axisymmetrical bending of the plate is

2 2 |
D(L;+ 1] =) po. 6

As in chapter II, to determine the
pressure pg, we use the incompressibi-
lity condition for the closed space

\\\\\\\\\\\\\\\\\\\g

a ‘
J.wr dr = Q. (5.2) _
0 ‘ 3 | __g é
When the radius & is small as 2
compared with the external radius a, =~ i

the action of the force q(r) may be Fig.3.3. Aplate covering
a container with liquid un-
reduced to the -concentrated load . P. der action of central force

Such a problem was considered in [7].
In this case the general solution of equation (5:1) has the form

A3 )

r r r p0r4

2 2
. r ' )
w = Cl + CQ ll‘lz"f— 63(3) + 64(5) lI’lZ 64D " (53)

According to clamped boundary conditions and to condition
(5.2), we obtain from (5.3) that

-l -5 ol
w_647zD[:1+25 SE +8a lna. .4)
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Without assuming the lower space to be closed and if po =0

the conditions (5.2) is not necessary. Then the solution of the
equation (5.1) will have the form

Pa* [rjz (r)2 rl
= — 4| — 81— In— ‘ 5
@ 64pD [4 % a * ) 4 e
rather than (5.4). This result is also valid for the case of no liquid.

Fig. 3.4a shows the results obtained from (5.4) (solid line) and
from (5.5) (dashed line). These behave differently along the radius

- 0.8 10
s K
i

[o]in

Fig. 3.4. Distributions of deflection (4), bending moments (b) and transverse

force (c) along radius of circular plate (7, ¢ aré the radial and tangential mo-

ments, respectively, solid lines correspond to the case of closed space, dashed
lines to nonclosed space)
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as well as being different in the deflection values. The deflection
in the center of the plate covering the nonclosed space is greater
than that obtained from the condition (5.2) by a factor of 4.

The bending moments and transverse force, according to (5.4),
are

; P [ : t 2 v o
M, S| = (7+3v)-3(3 +v) - +4(1+v)_1nz ,

____fr — | '(I_)Q Al
Mg = 15— (3+7v) 3(1+3v) . +4(1+V)lnaJ’ (5.6)
Plar a)

- Solid lines in Fig. 3.4b and Fig. 3.4¢ correspond to the Pois-
son's ratio v = 0.3 and were obtained from (5.6). Similar results
for (5.5) are shown by dashed lines.

The value of pressure p, in closed space is

Po = 3P/(7m2), (5.7

which is 3 times as much as that in the case of the action of the
force P on the same plate but freely slipping along the container
wall (this result has been presented in the Introduction).

Now consider the problem for the finite radius & of the rod
(Fig. 3.3). In this case, the boundary conditions have the form

| 2
dw_gq D_d_(d w+ldw):_bpo+ P (r=5) 58
dr dr\dqrs2 r dr 2  2xb
while ¢ = O is taken in the equation (5.1).

Condition (5.2) transforms to

. |
o wrdr + b*w(b) = 0. (5.9)
b
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Fig. 3.5 shows the distribution of the bendihg moments M,

and My as well as the transverse force for b/a = 01 and v = 03

(solid lines). Dashed lines show results for the case without liquid.
The pressure of the liquid in the space is

b\ (b)Q b
3p 1“(5) i B
Po = 9 9 3 .

e

For b/a — O from (5.10) we obtain the expression (5.7).

(5.10)

14.0 b
120 |
a
10.0 @
8.0 |
=
S]Q_ 6.0
©
40 [
20 | L
Q
0 . > ;
ai oz 4 Sege———08-—~_lo
s
-20 | P ’
e,
-40 ~
20 .
o |2
-20
g
& -40
(5 a.
-6.0
-8.0
-loo | T

Fig. 3.5. Distribution of bending moments (2) and transverse force () along

the radius of circular plate (7, ¢ are the radial ahd tangential bending mome-

nts, respectively); solid lines correspond to the case of closed space, dashed
lines to nonclosed space)
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§6. Circular plate under the action of a noncentral

concentrated load

If in the problem considered in the previous paragraph .the
concentrated load P is applied at a distance p from the center

of the plate (Fig. 3.6), then the following incompressibility condi-
tion for the liquid in the closed space is used instead of (5.2)
2ra ‘
J J'wrdr-dﬁ =, (6.1)
00
The solution of the corresponding bending equation, after sa-
tisfying (6.1) and the clamped conditions for the edge, will have
the form [6,8]

o) '+ 2]

(gj [1+ (-;5) C 9 [%) cos er
() A e
@@ -@-aT)

Pressure pg in the closed space produced by the action of the

TR (6.2)

force P on the plate is [§]

Po = 7[3—55[1 —(QQT. (6.3)
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~'When the force is applied in the center (p = 0) the solutions

(6.2) and (6.3) are reduced to expressions (5.4) and (5.7), respecti-
vely. In Fig.3.7 linel shows the deflection along the diameter

P

P Y n

o8t

EwD
Baw

Fig. 3.6. Bending of a circular = Fig. 3.7. Deflection diagram of circular pla-

plate, covering the space with  te under action of noncentrally applied for-

liquid under action of non-  ce (1—in the case of closed space, 2—in the
centrally applied force case of nonclosed space)

0=0, 0=grx for. p/la=1/2,line2 presents the deflection distri-
bution for the case when the space under the plate is not closed.
This has been considered in more detail in the previous parag-
raph.

In the absence of the upper liquid layer the term yw occurs in
the equation of the plate bending, as was discussed in Chapter II
in detail. In this case the solution may be written [8] as

'P

W =g
27 B°D

{kei(ﬁR) +o. 0 £ |
4{@0 (r) +2 i @, (r) cos(n@)}} ; (6.4)

n=1
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where the following notations have been used
@q = Ag ber (Br) + By bei(Br),
@, = A,ber, (Br)+ B,bei, (Br),
E = 27po | (B°P),
R= (r? +p? —2rpeos 9)

6.5)
1/2

The cylindrical functions kei, ber, bei, ber,, bei, invol-

ved in (6.5) are given in mathematical reference books.
Satisfying the clamped conditions for the plate edge and using

equation (6.1), we obtain the following values of the constants
1 ﬂ'o bel(ﬁa) |
. Olkg —ber'(Ba) pa/2
ber(ﬁa) /10 1
BO = 'A—' bef’(ﬁa) Yo 0 s
0 bei'(fa) ko pa/2

_ Ay beiy(Br) -y, beln(Br)

ber, (Br) beil,(Br) — bery(Br)bei,(Br)"
B — Y n berﬂ(,b’r) = o bel’,’l(ﬂf)
"™ ber,(Br) beiy (Br) — bery (Br) bei, 6r)’

The prime here denotes the derivative with respect to r. More-
over, the following notations have been used

ber(Ba) bei(fa) 1
Ag = |ber'(Ba) bei'(fa) O |,
bei’(fa) —ber'(Ba) Pa/2
Ay = —[kei,(Ba) ber,(Bp) + ker,(Ba)kei, (Ba)],

Ay
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Py = ~[kei;1(,5'a) ber, (8p) + ker,(Ba) bein(ﬁa)],
w=0LZ2....

Ko =g~ [iei!(Be) bei(p) ~ e () ber( )]

The condition (6.1) influences only the constants Ay and By

whereas the constants A, , B, remain unchanged even in the case

%:%QW(O) ﬁ 4 =‘¥-;-:=.—

L o O
) N S -
\ N
—@_ O 2.0 70~ 50 |pa
A / _l
TN NEENAS
/F%: / T
y \>\\ -4.0\
. ! ——
=2 T

o 20 40 [33 »BG

Fig. 3.8. The deflection in the cen- Fig. 3.9. Variation of radial bending
ter of the circular plate as a func- moment at the clamped edge of the
tion of specific liquid weight circular plate

of nonclosed space. The expression of the préssure po in the
space has the form [8] |

ber(Ba)  bei(Ba) g
po = |ber’(Ba) bei'(Ba) ¥ol. (6.6)
bei'(fa) —ber'(Ba) xg
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Nondimensional deflection in the center of the circular mem-
brane as a function of the parameter fa for p = 0 is shown in

Fig. 3.8. The numerical values of D) and a are unchanged, only
the value of y varies. The results for both closed and nonclosed

spaces are given. The presence of the upper liquid layer corres-
ponds to the deflection values for fa = 0,

It may be concluded from the plot, that the effect of the lift in
the bending equation is insignificant within 0 < fa < 2.0 in the
case of closed space and within 0 < Sa <10 in the case of a non-

closed space. Within these limits the effect of the lift may be neg-
lected. With increasing liquid density the deflections decrease and

more rapidly in the case of a nonclosed space. For fSa > 0 the

curves approach each other. Thus, for the heavy liquid the condi-
tion of its incompressibility does not exert appreciable effect on
the solution. As is seen from Fig. 3.9, the same estimations are

valid for the bending moment M, at r = a.

§7. Cylindrical bending of a vertical plate contacting

a liquid of limited volume

Consider the linear problem of bending q
for a vertical plate or beam-wall subjected =
to a hydrostatic pressure (Fig. 3.10). Assume o
that in undeformed state the plate is planar H f

and the liquid height Hy is equal to plate X

length L. The plate edges are hinged. In the
bent state of the plate the liquid height is o
H. Consequently, the liquid load on the ¥ig 3.10.Cylindrical
: ; _ . bending of vertical
plate varies, depending on its deflection va- plate under hydro-
lue. Suppose that the liquid surface is sub- static pressure
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jected to the pressure py equal to the pressure on the external

side of the plate, the pressure acting on the plate is determined
only by the height of the liquid column.
So, the incompressibility condition has the form

jwdx_(L )L, O an

where [ is the w1dth of the container filled with liquid for the
undeformed plate.
The equatlon of plate bending is

d*w B |
DEE =y(H-x), D=—FF—, (7.2)
dx | 12(1-v?)
where the right side corresponds to x < H . It vanishes if x > H .
Boundary conditions are
w—a’zw/dx2=0 (x =0, L). - (7.3)
An approximate solution is found in the form sat1sfy1ng the
condition (7.3)
M3

= W sin 22 + W, sin =22, 7.4
w 1 sin I 9 Sin I (7.4)

Substituting (7.4) into (7.1), we have

nH 1 ~ 27H H
(1—\cos—z—)1171+§(1—cos L)W@—yrl(l L)’

H is to be found from this expression using deflection amplitudes
W, Ws.
Consider the case when H is insignificantly different from L,

i.e. the liquid level does not come down strongly. Hence, the
value

h=1-H/L o @3)

is small as compared with unity.
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Using formulae of the form cos 7[(1 — ﬁ) = —cos wh and ex-
pandmg the tngonometnc functions into a power series, we have

2~
2(1——%)\1? + 2k Wy = mhl.

The first approximation is whi = 2W, . Substituting it into non-
linear terms, we obtain a refined relationship

B sy 1 w2 A
zhfz(l Z2W/)W/1+[ W, W, .

It shows that the first approximation zhl = 2W] suffices for the

linear problem if (W] / l)z <<1.

Taking into account (7.5), we have an approximate value for
the height of the liquid column ’

H = L(1 - 2W, /=l). (7.6)

Note that this expression does not have the amplitude of the
second harmonic of (7.4). It is seen from (7.6) that with increasing
container™ width, the liquid level tends to its initial value
(H - L). |

Integration of equation (7.2) is made by Bubnov-Galerkin's
method, using (7.4). In doing so, the left side of equation (7.2) is
integrated between O and L while the right one between O and
H . The value of the upper limit is given by expression (7.6). We
have

L 4 | sin— sin ——
d*w I3 B 3 I3
DJ ? 2y dx = 3 j(H )C) . 97 dx
0 SlH—L— 0 Sll’l‘—L—

For these two equations in W], Wy we make the same expan-
sion of the trigonometric functions into power series in terms of
7h . And it turns out that in terms of the amplitudes W}, Wy, the
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upper limit H does not affect the solution (the corresponding

effect is of order (ﬂﬁ)Q Lowering the level influences the

solution through the expression under the integral.
Introducing the dimensionless parameter

- 259 ot
« =—=—| =007——| , -
4 - #D\x E \rx ()
we obtain the following amplitude values
el & W, = }/*L
Coml+ 4Ly, B2

Accordmg to (7.4), the deflection of the plate referred to its
length is

w_ _ e in 7% 4 I* i Qﬁx. (7.8)

L m+4ly, "L 320 L

The bending of the plate takes place mainly as one half wave of
the sinusoid. The presence of the term with y, in the denomina-

tor violates the direct proportionality between the parameters of
deflection and hydrostatic pressure. It is due to the fact that when
the liquid level falls, the pressure acting on the plate decreases.

And the greater the ratio L// (i.e. the narrower the cavity occupi-
ed by the liquid) the more significant this effect. For the same pa-
rameter y ., the deflection of the plate is greater for a wider cavity
since f in this case is slightly different from L This may be seen
from (7.6) -

P i Y (7.9)

& ml+4Ly,

Note that when 4Ly, /(%) >> 1, it follows from (7.8), (7.9)

that W, /L — #l/(AL), H/L —> 1/2. But the linear approxima-
tion here does not correspond to a realistic case.
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§ 8. Stability of a vertical plate in a liquid

In a vessel with an open upper cover, the thin partition-plate is
subjected to compression by a force referred to the unity of the edge
width. The notations are given in Fig. 3.11. Consider the problem
of the stability of a compressed plate in planar formulation [10].

As a result of partition buckling, the difference between liquid

levels Hy — H) and lateral pressure occur. They are related by

1 42 | Li
g=y(Hy - H)=" |wdx, m=—>=22=2—__ @)
( ? m_{m y(ll +12)

Here the condition of liquid incompressibility has been used. The
true limits of integration (liquid levels) have been substituted for

mean value £/2. The correspon- Ny
|

ding difference, as was shown in pre- ] [-\I“-:—!i_——"ﬁ'
0 =

vious paragraph, is of order (zﬁ)

where A =1~ H/L and in the linear H, - H,

problem it is small as compared with’ |
unity. The pressure g (8.1), acting : l

on the plate is directed into the side P P
of the liquid with the higher level. - =
That is why it plays a stabilizing role Fig. 3.11. Buckling of vertical
when the plate is buckled symmetrj-  Partition contacting liquid
cally. | :

~ The differential equation for buckling of the partition has the
form

4 9
pLY ., pll._, (8.2)
ax dx
According to (8.1), the right side of equation (8.2) is inde-
pendent of x . Therefore, its solution may be written as follows
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w = C; sinax + Cy cos ax + Czax + Gy % qx4/(2P),
_ P/D.

Let both partition edges be hinged, ie. ©w = d2w/ dx? =0
(x=-L/2,L/2).In conéidering the asymmetric buckling about
the middle (x = 0), it is necessary to take Cy = Cy =0 in (8.3).
In this case the levels from two sides of the partition do not

change. Therefore, ¢ = 0 and the problem reduces to a classical

buckling problem. Two half waves occur. The minimum critical
force is known in this case to be

P=47z2D/I*> (aL =2x). (8.4)
Now consider the symmetric form of buckling about the midd-
le of the plate. Substitute the value of deflection for symmetric form
w=Cycosax +Cy + qxz/(QP) : (8.5)
into (8.1) and satisfy the plate fastening conditions. Putting the
determinant equal to zero, we derive the equation in L |
373 3
2 2 24 2
For unlimited width of vessel, m—>oo it follows from (8.6)
that ¢L = =z . Therefore
P =x"Df L2 (8.7)
This is a critical value of compressive force for a simply supported
plate (buckling with one-half wave formation). Thus the liquid
here does not affect the critical force value.

Turn back to the case of a vessel of limited dlmensmns
Rewriting (8.6) in the form

mD___1 y.al, 1'_; I
r (al)® 2 2(aL) 24(aL)?

(8.3)

tg
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and varying L, we obtain the function presented in Fig. 3.12. It

shows that when. m.D / I°>14-1073 the loss of stability of the par-

tition is accompanied by a one half-wave deformation (the buck-
ling form is symmetrical about the middle x = 0) and in the case

of mD / 12 <14.107% itis accompanied by a two half-waves defor-
mation (asymmetric form). The critical force is found from (8.4).

The latter occurs for narrow vessels, thin partitions and a dense
liquid. In fact, the thin plate, bent in the form of one half-wave, is
not "able" to hold the large difference of heavy liquid levels and
the related lateral pressure and therefore "prefers" to take the
form of two half-waves where the mentioned difference and
pressure disappear. ‘

As follows from Fig. 3.12, for a vessel of large width and a pla-
te of large bending stiffness (mD / I8 e oo) the root aL — 7. Cri-

tical force is determined by expression (8.7). One half-wave appears.
If the vessel is closed and completely full with liquid, the

problem is known to change essentially. Here the difference of

liquid levels from two sides of the partition cannot appear’

(H, = Hy = 0). The buckling has to satisfy the condition
L/2
j wdx = 0. (8.8)
~LJ2 . |
The necessity of taking into account the pressure pg arises.

Since it is constant in the whole volume and consequently along
the length of the plate, the general solution (8.3) is also valid in

this case. The lateral pressure g = p as well as the constants C;
‘cannot be found in the linear stability problem.
So, for a symmetric buckling, we have

w = Cycosax+Cy +Csx*, Cg =q/(2P).
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Making use of the conditions of hinged fastening and (8.8) and
setting the corresponding determinant equal to zero, we find

L 3
al _al (aL) 8.9
2 2 24
The lowest nonzero root of (8 9)is a L = 9.374 . Therefore the
critical force

tg

_(al)’D _ 8787D
L2 L2
is greater than that for the symmetric form (8.4). The loss of
stability for the symmetric form takes also place in the case of a
closed vessel completely filled with liquid.

Note in conclusion that in the case of partition buckling with
respect to the symmetric form, the compressive force and relevant
half-wave number depend on the parameters of liquid and vessel
whereas i in the asymmetric case there is no such an explicit depen-

— — — — — — — 1]

RN _
2 2 4 6 8 10° mp®

Fig. 3.12. Critical values of parameter al as functions of parameter
mD/ I%: 1 — for the plate not contacting liquid (buckling with one half

wave deformation); 2 — for the plate contacting liquid (buckling with one

half wave deformation); 3 — for the plate contacting liquid (buckling with
two half waves deformation, asymmetric form)
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dence. The latter case is as if there were no influence of the envi-
ronment at all. But this conclusion is not valid. Without a liquid,
the loss of stability with two half-waves deformatmn does not
arise.

Turn now to the stability problem of horizontal plate which is
between layers of liquid with different specific weights (Fig. 2.6).
Its formulation has been given in § 5 of chapter II for the case of a
membrane. The critical difference of specific weights is [3]

yo=71 _{5;:)‘*
D \aL) -

Here y| and ygo correspond to the upper and lower layers, re-
spectively, 2L is the plate width.

§9. Influence of medium compressibility

on plate bending

To understand the influence of compressibility, let us consider,
as an example, the bending of a long plane plate germetically
covering the cavity with rigid walls, being under action of forces
distributed along the line x = 0. The coordinate origin is in the
middle of the span of length 2L. Positive values of deﬂect1on w

are directed downwards.
The fluid compression in the cavity of unit length under plate
bending is assumed to be adiabatic, i.e. the law (0.8) from Introduc-

tion governs. In changing the initial volume of the cavity V; by
value v due to plate bending, the initial mass M of the medium

enclosed in the cavity remains the same. Therefore py = M, /V; ,

p=My/(Vy —v). Because v = I wdx, then according to (0.8)
2
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we can write

p = p0{1~—jwdx} : | ©.1)

L

Here p, is the pressure in the cavity before deformation, @ the

deflection, x the ratio of the specific heats (for air & = 1.4, water
k =7, ethyl alcohol x =~ 115, incompressible fluid x=c0).

The pressure will change adiabatically if the plate is loaded qu-
ite rapidly. We assume that the loading rate cannot be such that
the dynamic effects in the system should be taken into account.
Such an investigation was made in [4].

The linear equation of band bending under the action of the
pressure (9.1) and concentrated load P applied to the middle of
the span has the form

Dd ff-P&(x O)— J.wdx (.2)
dx —~L
where § =1 for x =0 and § = 0 for x # 0. The external uni-

form pressure is taken to be py.
Using hinge fastening, taking w in the form

- N . :
= Z W, cos — (9.3)
n=13,... 2L

and solving the equation (9.2) by Bubnov-Galerkin's method, we
obtain

o o IR (O (PR
W =—ll+5 ’“73"34,41 EEhE T 8

4
4](’[70(2[,)
e DL(?,L)’ = A

9.4)
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In (9.4) the terms of order 370 as compared to unity have been
‘dropped (taking A ~ B). |

~ The influence of fluid on the plate bending depends on the ra-
tio (putting v = 03, Vy =2LH)

B Po 2L(2L) | |
A—OOQI s 95

Le. it depends on the elastic features and geometrical dimensions
of the plate and medium (in the cavity). With increasing relative
depth H/2L this dependence decreases.

If po/E=107° x =14, 2L/H = 2, h/2L=10"2, we shall
ha-ve B/A = 0255 and W, =0.797 P/A, Wy =1067-37* P/A
versus W = P/A and W = 3% P/A for the case when the
cavity is not taken into account (B/A = 0). For ¥ =7 and
other data same as above, B/A amounts to 127, that means that
~ the equation (9.2) and subsequent formulae cannot be used since

they are valid only for small values of B/ A In such cases more

terms in the binomial expansion of expression (9.1) should be
retained. Note that the necessity of including nonlinear terms: in
the right side of (9.2) may arise earlier than that for the nonlinear
term due to the membrane force in the plate.

Using this simplest problem as an example, consider the step-
by-step method with the scheme

Dddwi) = Pé‘(xf—O)—— _[Lw‘ D gy (i:.l,fZ,...),_ (9.‘6)

where @(%) =0 is assumed. After the first step we obtain Wfl(l) =
=P/ A as a first approximation to W] in the expansion (9.3). The
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second and third approximations are
P(. B ® _P(_ B, B>
W(z)z—[1—~), =—(1~—+———‘.- . O7
: AN W ANV A a2 il
Thus, the approximations (9.7) converge to the exact value
— (P/A)(1+ B/A)™ under condition B/A < 1. For small va-
lues of B/A two or tree approximations may be quite enough. For

data considered above W/l(z) =O.'745P/A‘; WI(S) = 0810 P/A.

The exact valueis W; =0.797 P/A ..

This method turns to be also useful in solving more complex
problems. They include, for example, the case of a plate when the
lengths of its sides are of the same order.

The solution (9.4) cannot be used in the case of incompressible
fluid. Corresponding plate bending has been examined in previo-
us paragraphs. Now let us consider the solution of the problem by
the method used here and compare the results obtained with (9.4).

The back pressure on the plate, instead of (9.1), is

PR d3w
- K= ] 9.8
TR sl ©.8)

It is found from the condition of the whole plate equilibrium. In
(9.8) R is the reaction at the support. Substituting (9.3) into in-
compressibility condition we obtain

=-N Z e 9.9)
n=13,..
This condition reduces the approximait:ion (9.3) with (N +1)/2

variational parameters to approximation with (N —1)/2 variati-
onal parameters

N-2 '
= > W, Iicosm—iv—(—l)(n—m/‘? cos wjl (9.10)
oL n RarY; _

=18
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The pressure (9.8) does not do work on deflections (9.10). On
integrating the bending equation

D(a’4w/a’x4) =PS(x—0)-p

by Bubnov-Galerkin's method the last term in it disappears. So,
we shall have

w1+ () [+ 25 5 L eeanos -

n

n° B=13, -
P[l_ a 1) n- N)/ﬂ ©.11)
A .
In the sum over k& the member corresponding to 2 =1 is

dropped.
Consider an example with three members in expansion (9.3)

(N = 5). Then, according to (9.10)

w =W (COSE—E)COS—S-”—)C-) + W3 (cos%—écos%)
2L, 2L 2L 3 2L

We find W] and W3 from (9.11) and Wy from (9.9). Their values

with error of 370 as compared with the unity are

6
W=i-(3) | m= AR, w =R
34 N 3°A 5° A
Unlike the case of incompressible fluid when the first member
of the expansion (9.3) is the largest one (then. the series converges

with the rate n_4), in the case of compressible fluid the second
member of (9.3) is the largest, namely it exceeds the first member
approximately by a factor of three.

Note that the bending of plate contacting an incompressible
fluid is completely independent of physical properties of the fluid
‘and cavity dimensions. As follows from (9.4), (9.5), it depends on
the mentioned properties in the case of a compressible fluid.
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§10. Influence of medium compressibility

on plate stability

Consider the stability of a plate which is subjected to compres-
sion by force N . As in previous paragraph, a long plate hermeti-
cally closes a cavity with compressible fluid. '

We assume again that pressures from two sides of the plate are
equal to each other before its buckling. In the linear approxima-
tion we shall have

pdiw , yd'w _ _ po jwdx 0.
dx* dx® 3 |
Taking into account two first members of (9.3), we integrate
(10.1) by Bubnov-Galerkin's method to find that the loss of stabi-
lity with respect to symmetric form with one half-wave takes place
for the following value of compressive load [4]

2, B |
veo()(D.
while with respect to two half-waves deformation, , _
2
_ r : ‘
M = D(L) - o (103)

The ratio B/A is given by formula (9.5). From (10.2) and

(10.3) we conclude that the load ‘value under which the plate
buckles with respect to the symmetric form depends on properties
-and dimensions of the cavity, while for the asymmetric form of
stability loss it does not depend on these factors and is equal to
the corresponding load for the plate not contacting fluids.

The linear approximation shows an equal possibility of plate
buckling to either side. This corresponds to the considered form.
Moreover, the correction for nonlinearity (due to adiabatic law as
well as to occurrence of membrane forces in the plate) in the
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bending equation for the asymmetric form of buckling does not
lead to changing the mentioned fact. Something different takes
place in the case of symmetric form of buckling.

Retaining, according to (9.1), three members of the expansion
in the right side of the equation (10.1), we have

Kpo J‘ At = A (—‘[wdj + (K+é)1£§+2){iwde

(10.4)
Moreover, we take into account the effect of membrane forces in
the plate which is also described in the bending equation by the
cubic member [4].
Integrating the mentioned equatlon by Bubnov-Galerkin's
method with one-term approximation, we have for the symmetric
form

2
b B 2L
N = D(QL) [1+A+Z7FV (K+1)W/1+
BQ(QL)Q 1 !
+=2 = (1 + D) (xc + 2) W2 +——W/ . (10.5)

Here the last term corresponds to the "geometrical" nonlinearity
of the plate in bending. :

For the case of rectangular cavity (V = 2LH ), the formula
(10.5) may be written in the form

w=p(Z£) 1+ B (M),

2(x+1)(x+2)3(W1)2 oL (Wfl) } (106

3724 HJ 16\ A
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N I whence one can see that unlike the role
of usual nonlinear term of the plate the-
= - ory which depends on the ratio of the

N
\ deflection to the wall thickness (WL / h),

—I' the role of the nonlinear term taken into

" account here depends in particular on
b

-W,/h 1

. the ratio of the deflection to the depth

W,/h of the rectangular cavity (W;/H). Clea-
Fig. 3.13. Deflection of the 1Y these terms also depend on the ot-
plate with one of its sides her parameters, namely on the relation
contacting a compressible between the elastic properties and di-

medium as a function of oo (rihe plate and cavity.

compressive force. The pla-
te 'lll;refers'l buckling OIilt— Fig. 3.13 shows the compressive force
wards N as a function of the relative deflection
W, /h in the middle of the plate. The

curve I obtained from the equation (without fluid effect)

N =N |l+-L [ﬁj
16\ A
intersects the axis of ordinates at the i)oint No =D(=/ 2L)2 and

is symmetric about this axis. ‘
The curve II obtained from (10.6) intersects the axis N at

No(l+ B/A) and is asymmetric. The value Ny(l+ B/A) is the
critical value of the compressive force (10.2). It is seen that at this
point the curve has a slope to the side of negative W}, i.e. the

N
—

*—No(1+B/A)

plate will be trying to buckle outward. The least value of N will
be for
W 8(x+Dhp
ho zH A

(10.75
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For a not very shallow cavity, the effect of the last but one term
of (10.6) is small as compared with the last one, and it is dropped
in the formula (10.7).

When the compressive force reaches the value Ny(l+ B/A)

the plate rapidly buckles outward from the position | to position
2. The relative deflection becomes equal to

W, 16(x+D)hp
ho zH A

or, using (9.5), to

W Po (2L)2(2L)2
7" o 0.464K(K'+1)E 7 2

The deflection may be significant. For pg/E = 10_6, Ke=T1,
2L/H =3, 2L/h =102 itis W] /h ~ —2.34.

In the case of an incompressible fluid the critical value for the
asymmetric form of instability coincides with (10.3). Buckling
with one half-wave deformation is impossible. Buckling with a
combination of three and one half-waves but with a

corresponding compressive force greater than that accordmg to
(10 3), is possible.




CHAPTER IV

SOME EXAMPLES OF NONLINEAR
PROBLEMS

§1. Flexible plate on liquid surface under loadh

distributed along line

In this chapter the nonlinear behavior of plates, shells and pa-
nels contacting fluid is considered in a more systematic way. In
previous chapters, nonlinear effects were considered in a more ad
hoc manner. The fluid may be incompressible or compressible.
Deflections and rotations of the thin-walled elastic element may
be arbitrary. In considering buckling of a cylindrical shallow pa-

nel the maximum rotation angles are of order b/R while the ma-
ximum deflections are of order b2 /(4R) where b is the half the

chord, R the panel curvature radius, b / (4R) being a measure of

the distance from a plane to the point on the shell of maximum
height from that plane.

The simplest problem allowing exact integration of the equ-
ations under arbitrary deflections is the one considered in §7 of
Chapter II, i.e. the equilibrium of a long membrane under a load
distributed along a line (see Fig. 2.7). The same problem is stated
in this paragraph. The difference consists in that here instead of
the membrane we ‘consider a infinitely long flexible plate with a
bending stiffness ‘D [8]. The weight of the plate is not taken into
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account. The notations of Fig, 2.7 also hold here.
So, the bending equations have the form (7.1) and (7.2) from

1/4

Chapter II. If all linear dimensions are referred to (D/y)’" and

all force factors to (D/ ;f)l/ 2, these equations will have the follo-

wing form
" g% - 1 o) .
F:(u—P}cosB+(T—§z )sm@, (1.1)
ilﬁ:zcos@, 4&=0059, gé:-—sin@. (1.2)
| ds ds - ds ‘
Boundary conditions are ,
6(0) =0, u(0)=0, x(0)=0, (1.3)
0(0) =0, u(0) = P, z(oo)zO. (1.9

From (1.1)—(1.4) the relation of dimensionless element rota-
tion angle 6(s), coordinates x(s), 2(s), maximum deflection va-
lue wy =2(0) (under loading) and function u(s) to dimensionless

force factors P and T can be found. .

In the case of small values of P as compared with unity the
required functions may be represented in the form of power series
as follows

0=POy+P0, +..., u=Puy+Pu +..
XZ)CO+P2)C1+,.., Z:PZO+P321+...

According to (1.5), the equations a and boundary condi-
tions (1.1)—(1.4) give the following system of equations in 8,

Ug, Xgs 20+
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2
d%):%-4+r%,
ds
duO dJCO dZO
—T =gy, =], ~— e, 1.6
ds % g ds 0 (L

00(0) =0, u9(0) =0, x(0) =0,
90(00) = O, uo(OO) = 1, 20(00) = 0.
In the usual way, we also obtain the equations and boundary
conditions in 8}, 41, X, 2 .

Consider the solution of problem (1.6). Differentiate the first
equation of (1.6) with respect to s to find

4 i 2
d 20 3 d 20
ds* ds?
When T = 0 then (1.7) is the well-known bending equation of

a plate (beam) on an elastic foundation.
For T > -2, T # 2, the solution (1.7) has the form

20 = 1 (ﬂeﬂ,s__/le,us),

VT2 -4

L (B dae)r,

+ZO:~"O. (]7)

uOfJT2—4 A H
QO:M—;ijZ@“-ewy (1.8)
X =8,
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For the deflection under the concentrated force 2P, we have

wg = P[2+T (T>-2). (1.9)
When —2 <T < 2 then the solution is a wave decaying with
the distance from the concentrated force.
When T > 2 the solution decays monotonically, For T = 2 it
has the form

20 =—;—(l+s)e-_s, %g =,

1 =3

S—e™, 0y =5

o =1- 1 ge-
2
The solution in 2y, X{, 4|, 8 can also be found. But now we

turn to obtaining the first integral of the initial nonlinear equa-
tion [8]. Multiply (1.1) by d8/ds and integrate with respect to §
to obtain

1(@)2_ (4 d6
sl = | (« P)cos 0—=ds +

1 .8Y ., =88, ;
+j (T—§Z )sm@zds—(u—P)smé’——

- Iz sin @ cos 9ds~(T—éz2) cosf —
\ dz, .
— IZECOSHdS-—-(u—~P)sm9—

‘ 1.10
——(T—522)0036’+C. . 1%

It follows from conditions at infinity (1.4) and from (1.10) that
C =T .For s =0 from (1.3) and (1.10) we find

do/ds = wg . (1.11)
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Multiply equation (1.1) by 2z and integrate with respect to s to
obtain

z—alQ——cosé’:—Luz—-Pu——l—T22+—1—z4+C1. (1.12)
ds 4 ¥ 8

It follows from the conditions at infinity (1.4) and from (1.12)
that C; = (P2/2) —1. TUsing equations (1.11), (1.12) and

conditions (1.3), we obtain a quadratic equation in wo whence

W =[2(2+T)i-2\/(2.+T)2-—PQ]W. (1.13)

Here we take the minus sign since @ o= 0 for P =0.
| s Fig. 4.1 shows the plot
[ / ~"~_  drawn of (1.13). The li-
= - g N near function (1.9) is gi-
p ' -\ ven by the dashed line.
| The nonlinear solution
shows that the deflecti-

e on Wy =+/4 + 2T cor-

2T responds to a maximum

0 i 2 value of P=2+T.
Fig. 4.1. Load versus plate submersion into The further increase of
fluid

0.5¢

Wy (with decreasing P)

leads to an unstable solution. For a given axial tension T, the
force P may grow up to 2+ 7. When P > 2+ T, the whole
system submerges into the fluid without limit.

In dimensional units, the maximum load value which can be
sustained by an infinitely long plate on a fluid surface is

=2T' +44/Dy . | (119

Note that the membrane force 7' can be negative as well
(compressive forces applied to the plate at infinity). In particular,
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for P’ = 0 according to (1.14) these forces are

T'=-2,Dy . - (L.15)
The value of T’ by (1.15) may be thought of as critical one above
which deflections of an infinitely long plate, resting on a fluid
surface, occur.

Fig. 4.2. Plate deflection diagram for a stretching force 7= 3 and different
values of load P

' Fig. 4.3. Plate deflection diagram for compressive force 7= —1. Maxi-
mum load is P=1

The shape of deflection along all plate length was found by
numerical integration of system (1.1)—(1.3) taking into account
(1.13). Fig. 4.2 shows the deflection diagram for 7" = 3 and diffe-
rent values of P, It is similar to that in Fig. 2.8 for the membrane

except for the load application zone (s =0). In this case the

maximum stable value of transverse force is P = 5 on exceeding
which the system submerges into the fluid without limit.
Fig. 4.3 shows the case of a compressive load (T' = —1). The

solution here is oscillating, which is peculiar to Ty« 2,
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§2. Cylindrical panel under the action

of a load distributed along line

The convex side of an infinitely long panel with curvature radi-
us R contacts the surface of a fluid extended without limit
(Fig. 4.4). The panel weight is neglected. Uniformly distributed
load of intensity 2P’ is applied along the center line of the panel.
Therefore, a plane problem symmetric about the arc middle is
considered. The essential difference of this problem from that in
the previous paragraph is that here the arc length of the panel is
finite, part of which is not in contact with fluid. Thus, the
interaction domain is varia-
ble here.

The coordinate system
and notations are presented
in Fig. 4.4. The length 2I' of
are along which the panel

Fig. 4.4. Cylindrical panel under a con-
centrated load on the fluid surface contacts fluid and the corres-

ponding chord 2a' are to be
found. Radius R of unloaded panel is supposed to be a con-

stant. Dividing all the lengths by (D/ 7/)1/ * we have the equili-
brium equation [9]

2 S
i—Q+ jzcos@ds cosH—FlzzsinO:O.
ds? 5 -2

Introducing, as in the previous paragraph, the function # by
the formula '

du

<

= zcos @, | 2.1
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we come to the set of equations

d’ 9+ucos¢9+1z sin@ =0, (2.2)

ds? 2
@:Siné’,g—zcos& (2.3)

s ds

Boundary conditions have the form

dé’ (o) = & 2.4)
u(O) x(O) = z(O) B, | (2.5)
6() =0, u()=P/Dr)” =P, 26)

where A, [ are the dimensionless curvature of the unloaded
panel and the half length of the contact of the unloaded panel
with the fluid, respectively. Dimensionless half length of the are a

and maximal submergence in fluid w are
a=x(l), wy=2(). 2.7)
Consider the case of a planar plate (2, =0) and values of P

small as compared with unity. Then the solution in 8, H; %y 2
may be presented in the form of a series (1. 5) and

[=1y+P% +

The equations in functions 90,~ ug, Xg, 2o, lp and
corresponding boundary conditions have the form

d20 duo dZO . de ]
=0, — =29, — =60y, — =1, 2.8
ds? 2+ %o ds 20 ds 0 " 4s S
6, :
—d-;—(O) = Xq (O) = ZO(O) =Ug (O) =0, » (29)

uO(lo)zl, 90([0)=O . ks . (210)
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The set of equations and boundary conditions in 6y, uy, xi,
21, Iy are determined in the usual way.
From (2.8) we obtain the resolvable equation in %
4
d“ug

2 +u0:0. (211)

as

The solution of boundary value problem (2.8)—(2.11) has the
form

B ch (S/ﬁ) cos(s/ﬁ) " sh (S/\/E)Sirl (S/\/_Q')
0" sh(7/2) S sh(7/2)
L ch(S/ﬁ) sin (S/ﬁ) +sh(s/ﬁ) cos(s/ﬁ)

o | J2 sh(z/2)
Xy =8, lozx/ﬁ.

From the expression of 2 in (2.12) one can see the

H

, (212

complicated character of deflection diagram. This linear result
coincides with the solution of the problem in §1 of Chapter III if
in the latter case the weight of the beam is neglected. Moreover,
no separation from the fluid was assumed there in any part of a
beam. The solution was presented in Krylov's functions.

From expression of 26 in (2.12) we obtain the maximum def-
lection (for s = [y = 75/\/_2‘)

l 7\ ,
W :—-—Pcth(-—j. 2.13
0 \/5 9 ( _ )
Note that in the problem statement in the beginning of the
paragraph the panel width has not been mentioned. It is valid if
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its own weight is not taken into account. Clear.ly, the dimensional
value should not be less than

= 21, (D/n)* = 2 O @

Otherwise the welghtless panel (in the glven case a planar plate)
on the fluid surface cannot bear any load.:

Turn to the results of numerlcal solution of nonlinear system

(2.1)-(2.6) [9]. Fig. 4.5 shows the load as a function of maximal

penetration into fluid. The linear solution (2.13) for the planar

W, _
ol LYl .
= 2P ” 'w.
A,
. F
1
%z A=0
| 0.5 £
1 ' 1 N
2 z 7 = -
| =
0 ) ‘
0 0.5 1.0 P

Fig. 4.5: Submersion into fluid as a function of load (P, w are dimensio-
nless values)

plate (4 =0) is valid for small load P (dashed line). When
0 < P <1 itslightly differs from the nonlinear solution.

~ Let us consider in more detail, for example, the case of panel
‘with: cl\imensionlgss curvature A =0.5. With increasing P, Wy
grows in a nonlinear way. At point F in Fig. 4.5 the maximum

possible load value is 2P = 2.42. Larger values of P lead to
‘submersion of the whole system into the fluid without limit. In

‘the down-tending portion FQ the state is unstable for a given’
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value of P, but stable for a given deflection. The point @
corresponds to contact of the panel edges with each other (small
circles at the ends of the presented curves for all A correspond to
closing of edges).

Fig. 4.6 shows the ultimate load
which can be borne by a panel as a
function of its curvature. The plane
plate (1 =0) can bear thé maximum
load 2P =327 or in dimensional

form 2P" =327+ Dy . To accomp-

lish this, the plate width should be
large enough. Its approximate value is
Fig. 4.6. Ultimate load ver-  gjyen by formula (2.14). With incre-

i i pentel ,curva,ture asing curvature the ultimate load dec-
(P and A are dimension-

less values) reases and tends to zero as 7z/ A%,
Fig. 4.7 shows the load as a function
of contact length of the panel with the fluid surface (P and A
are dimensional values). For (4 # 0) and small P the simple
relation is valid

0 05 1.0 15 *

op ol _ sin(2l/1),
A 83

which is obtained by applying’Archimed‘e's law (0.2) from the
Introduction to the undeformed panel contour. In the case of

A =0 we obtain [ =7 / \/—,‘2 , which coincides with /g in (2.12).
The dimensional width of flat plate is_restricted by
J2r(y /D4 < 2u <472(y [D)Y*.

Fig. 4.8 presents shapes of elastic panels with initial curvature
2 = 05 under various loads. States M, N, F, Q correspond to
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0 05 1 P

Fig. 4 7. Length of panel contact with fluid for various values of initial cur-
vature as a function of load

Fig. 4.8. Panel shape and its submersion depth under various loads (for
P 0.480 the position M is realized, for P=0.878 the position N, for
P=1.214 theposition F, for P=0.878 the position Q)
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the same points as in Fig. 4.5. States M, N are stable. In the state
F the maximum bearing shape is reached. In the state Q the
bearing capacity is the same as for N, But the state @ is unstable.

§ 3. Cylindrical shell in a liquid under load distributed

along a line

Consider the equilibrium of a long horizontal thin-walled elas-
tic cylindrical shell which is completely or partly submerged in a
' fluid. Uniformly distributed load of intensity
- 2P’ is-applied to the lower generator of the

cylinder (Fig. 4.9). It balances the lift from
the fluid side, which depends on the submer-
sion depth and deformation of the shell. The
weight of the latter is neglected. We can res-
. o trict ourselves to considering deformation of
Stiegi14{191 ' t%ﬂiimgsggi a ring generated by two cross-sections of the
the distributed load Shell. Let us present the results of [1].
2P' per unit length We shall use the following notations: x',
2' are the cartesian coordinates directed as

shown in Fig. 4.9; s’ the arc length measured from the point O;
6 the angle between the tangent and horizontal line; L the half
ring perimeter; ¢’ the force of ring compression in the tangential
direction at point O; pq the hydrostatic pressure at point 0. The

total hydrostatic pressure is p = py +y2'. Let us introduce
nondimensional values as follows |

! ' f . ! LS
g=S guX  H_ 2, ,u:po ,
L L L D

4 )72 iy 2
sl g T p P
D D D
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Since pg is the pressure in the fluid at the upper point O, the

parameter 4 defines the shell submersion depth. The parameter

7 defines the pressure variation along the shell surface.

. We consider separately the cases of complete and partial shell
submersion in the fluid. In the first case equations of deformed
shell equilibrium have the form [1]

%0 - L o). |
= el i sin @+ (ux + rujcos @,  (3.1)
ds 2
dax _ cos 4, dz _ sin @, du _ 2cosd.
ds ds ds
Boundary conditions are .
9(0) = x(0) = 2(0) = w(0) =0, (3.2)

x()=0, 6(1)=7=.
In the case of partial shell submersion the length of the arc s*

0<s* < 1) not contacting fluid is introduced. Correspondingly,
% e x(s*) B = z(s*) . The pressure on the shell is zero in its non-

wetted portion and is linear with increasing depth 2 — 2" in the
wetted portion. We have the following equilibrium equations [1]

T2
4’0 _ _¢gno, i—x—=0039, 92 _sing (0<s<s"), (33)

ds? S ds
j—jg = [—-t +—;:r(z —~ z*)2]sin9 + r[u - z*(x ~ x*)]cos 0
(S* <s< 1), (3.4)

Qf_&:Cose, @=sin9, iL£=Z\COSQ,

ds ds ds
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as well as the interface conditions on the boundary § = S% and
conditions (3.2). In (3.4), u(s) is

- u(s) = _Sf 2(&)cos (£ d&.

From the equality condition of the vertical force 2P! and fluid
buoyancy force for deformed shell, we have

_ P =—zu(l).
For s* =0, u =0, the equations (3.3), (3.4) reduce to (3.1).
For small values of 7 and in the interval O < p < pq, where
Mo = 37[3, the solution of the problé'rn may be presented in the
form of a series,
G = (90 + 191 Py £ = )CQ ETE] Py 2 =2 Lk S
U=tug+rt +..., t=1ty+7t +... (3.5

The solution for functions 8(s), xo(s), 2o(s), to(s), to(s)
is ‘given in § 6 of this Chapter.
In [1] the solution for functions & (S) xl(s) . is found. In

addition to the regular case O < u < sy the solution for the
singular case u ~ Mo is also found. Omitting these solutions, we

present the results of numerical analysis.

For each value of the nondimensional pressure gradient 7, we
determine the maximum values achieved by P/7"as well as the
values of x4 under which points from the opposxte sides of the

ring are in contact. The arc length of the non-wetted portion s
in the case of partial submersion is also found.
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Fig. 4.10 presents the shell shapes for various values of 7 and

4 (or sY). Because of the presence of the variable part of hydro-

static pressure, the lower part of the outlines is more compressed
than their upper half.

P (Y X b>@ N (BF

Fig. 4.10. Shell shape: a) for ‘,u =90, 100, 119 ahd constant value
7 =100, b) for z =100, 300, 385 and constant value x = 0,

c) for s* =1, 0.6, 0.3 and constant value 7 = 700

Fig. 4.11 shows P/t =P' / (}fLQ ) as a function of parameter

4 (or S*). Moving along the axis s* (from 1 to 0) corresponds to
the stable equilibrium of a partly submerged shell. The shell

more and more submer-
ges into the fluid and
has a greater bearing
capacity with increa-
sing the load P. Those
states which correspond
to the curves going 1 05 0 80 160 &

dow, il mcr@asmg Fig. 4.11. Bearing capacity of the shell with
the value of g are  yarying depth of its submersion in a fluid
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0-0 L "
0 200 385~ 7T

Fig. 4.12. Shell bearing capacity with
varying the variable part of hydro-
static pressure = and in the absen-

ce ofits constant part (u = 0)

unstable under the constant lo-
ad P. The shell sinks in the flu-
id until it is crushed completely.
But these states are stable for
the fixed shell positions along
the vertical (i.e. when there are
kinematic limiters). The end po-
ints of the curves with increa-
sing p correspond to the con-

tact of the sides of the shell re-

sulting from the large shape changes.
Consider the regime of gradual loading of the shell by the force

2P'. For small 2P’ the shell is little submerged in fluid (in the

®. *

0.08

Fig. 4.11, s* is close to
unity). With increasing
2P', the shell goes down
further until its complete

3 *
submersion (s decrea-

ses to zero). After that
the shell sinks, more and

107

more flattening (if the
value 2P’ reached by

A A

the time of complete sub-
mersion is held).

The force P as a
function of 7 for 4 =0

(i.e. the upper shell point

0 5

~10tt

O coincides with the

Fig. 4.13. The bearing capacity of the shell fluid surface) is given in
(@) and the submersion depth parameter Fig. 4.12. The value of 7

(b) versus the variable part of the hydro- -

static pressure 7

under which the lateral
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~ shell surfaces come into contact is approximately equal to 385.
Fig. 4.13 shows the maximum values of P/z as functions of 7

within the limits 0 < 7 <10%. It also presents the arc length of

the non-wetted shell surface s*(7) corresponding to (P/7)_,. .

Note that all the presented results are valid for the cases when the
weight of the shell can be neglected.

| §4. Stability of a shallow panel under a liquid layer

Stability of a long shallow cylindrical panel bearing liquid with
a free surface is considered (Fig. 4.14). The structure is assumed
to be able to have an upward acceleration with an overload

coefficient n. All the walls are rigid. The mass forces of the shell

itself are not taken into account. Let us present the results of [3].
The pressure on the shallow panel before its deformation is

equal to ny [H G = (b2 — 2x2) /(4R)], where y is the specific

liquid weight. Notations are given in Fig. 4.14. With a panel
bending of w, the free liquid surface descends by the value

~ (1/20) j wdx . Hence, the pressure on the deformed panel is
-b

| b
B B 1
=ny|Hy —2—22_ 41— |wdx|. 4.1
pewm -t e e

If the free surface width 2/ is much greater than the panel span
2b the last term in (4.1) may be omitted. On the other hand,
when the free surface is at the level of thin section (Fig. 4.14) (and

the layer thickness Hy is significant, only the first and last terms

in (4.1) are important.
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The nonlinear bending equations of a long shallow cylindrical
panel have the form [4-6, 10]

dx* D R dx "D’
N_du_w l(@) ( _L)
K-dx RYo\ax) \K=i.2) . @9

where N is the membrane force constant along the arc. The
pressures above the liquid surface and under the panel are equal
to each other.

27 2/

W24
5

/K“Sw .
R 2b 2b

Fig. 4.14. Containers with different ratios of dimensions of elastic panel
and fluid surface

Let us take the deflection function in the case when both panel
ends are hinged (w = dzztu/dx2 =u=0 forx == b) in the
following form

3zx 2 X
Wi __+W ___+W 1] i 4.4
w = W cos % 3 COS % 9 SIN T 4.9

Integrating (4.3) one time, allowing for (4.4), and satisfying
conditions 4 =0 (x = £b), we find -

Z” p? =3 - fs"——“(f1+9f3 +4f2) 4.5

where the nondimensional parameters of the curvature,
membrane force and relative deflection are introduced as
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Wt Nb2 RW/I
b = =
RR’ y M fl

(4.6)

RW2 RW,

fo = I3 T i

We integrate the equatlons “4.2) and (4.1) by Bubnov-
Galerkin's method (setting / = b (4.1)) to obtain

&) -8 w-ali- 25032

1 4
_qo+g(z——) y, (4-7)
T

4 2 4.8
—qore(s-25)-ut  ©®
¢ 4 gn?
(*-7%u% - g)f, =0, “9)
where
nyb* dnyHob®
T ... iy (4.10)
D khD
From equation (4.9) we have
) fo=0, z*- 222 -g=0, 4.11)
) 20, zt-22u%-g=0. (4.12)

The first case corresponds to the panel bending symmetric
about its middle; f; and f3 here are determined from (4.7) and

(4.8), depending on ¢, g and parameter L.
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The roots for  are found from relation (4.5) in which f, =0

while f| and f; are diminished, using the above mentioned

expressions. In particular, when the influence of initial curvature
and panel bending on the pressure (4.1) is neglected, then, putting
g =0 in (4.7) and (4.8), we come to the well-known problem of

stability loss with respect to the symmetric form under the "dead"
load [5,10] (the limit case for g/qo = bz/Ho R << ).

Only quite shallow shells with a curvature parameter 2 < 9.04
(which corresponds to a rise nearly equal to the panel thickness)
may lose stability with respect to the symmetric form. It will be
shown further that in our problem this value may be even less.
Therefore, in this case the effect of initial curvature and deflection
on the pressure (4.1) is small. It may be significant only for large

values of parameter g and small liquid layer thickness H (or

qo)- In connection with this, we consider only the stability loss

asymmetric about the span middle to which the relation (4.12) is
corresponding. The relation gives

2 2 4
ut=n’(1-g/x%). 4.13)
Thus, unlike the known case of loading by pressure of constant

intensity ( p2 S ) the loss of stability of panel bearing a liquid

takes place under a smaller membrane force. Allowing for (4.13),
from (4.7) and (4.8) we have

1=5][(5) e -G

_ 8 2__ (1 L)
5n2[” 48 (4+97r2 g]}’ 9
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f - 1 g(£)4+(9 s 24)g [72'2—(] (1+ 5 )g:|+
37 A)|5\2 20 5,2 0 \4 97
24g [ 1 3
5”g_,,2_q0_(z_;5)g”, 4.15)
where )

§ 4 1 1602

A:ZI. 3_7[ o g.}__s_) 3 T +(_3__L) +_g_..
T3 (3.8,)e[o(0) " (2- 8] 52
Using known f; and f3 as well as /12 , we find from (4.5) that

fo = i[— 31k62 (l— ”gJ + 3:3 (3f1 —fs)‘i(flz +9f32)]l/2. (4.16)

Here the signs + indicate the equal possibility of up or down
buckling with respect to the symmetric form.

To analyze expressions (4.14)—(4.16), we consider the panel
stability loss under the invariable load qo=4g H o/(kh), which
is necessary for comparison of the results in the two different
statements. Moreover, the deflection amplitude with respect to

the asymmetric form are not determined in [4-6, 10].
Setting g = 0 in (4.14), (4.15), we find

« f
h = 32;15(m —q) f3 —1—;;—5(7:2—%), §=4—15. 4.17)

Because the ratio f3 / fi is small, we neglect f32 in (4.16). Substi-
tute (4.17) into (4.16) (g = 0) to obtain

1/2
1 32 134 o 64 ( o °

=+4|- _ - .
: _4|: 3k2 +37r8 135\ qo) 9710 (” qo) ]

(4.18)
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If the term f3 is not taken into account in (4.16), unity will

appear in (4.18) instead of the ratio 134 /135.
Equating the expression under the root in (4.18) to zero, we

obtain the upper and lower critical pressure values

2 2 ¢ V2
(+-) _ 2 13437 _(135) z
90 7"~ 135 4 1F]1 134) [op? . (419

It follows that the stability loss with respect to the asymmetric
form is possible if the curvature parameter is

3
p=134 7" _904.

135 |12

The plot of function (4.18) is shown in Fig.4.15 (solid lines). It
is seen that with increasing curvature parameter 2 the amplitudes
of the asymmetric component of deflection also increase. The
upper and lower values of the nondimensional critical pressure

qo are in the ordinate axis.

In the case of g = 0, exact solutions of equations (4.1), (4.2)
can be found [5]. The solution of (4.2) has the form

f=Acos,u§+Bsin,u§+C§+D+l q—o-—l 52. (4.20)
2 #2

Here [ = wR/ b, &= x/b. The expression for g is given in (4.10).
Letting (4.20) satisfy the conditions for panel with motionlessly
hinged ends, we find

A= .21 (q‘;—l), C=0, D=-(%+-—1-2-)(q—‘;-1),
p? cos u\ p TRIAN”

(4.21)
Bsinu=0 4.22)
. and, moreover, the equations for determining parameter 4.
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Let us consider bending with respect to the asymmetric form.
Putting B # 0, sin 4 =0, in (4.22), we find that the least non-

zero value of the membrane force parameter is" 4 = 7, which co-
incides with the value (4.13) (g = 0) determined by Bubnov-Ga-
lerkin's method. From the boundary condition we find

4 x4 1 n? 2
pes 2[—3k2 +47z2(1+T)(” ~40) -

w
1/2
1 or? 2
_ (5+%)(,,2_q0) ] . (4.23)

167*
According to (4.20), (4.21), (4.23), we have

;=(1-%)(ﬁcosn¢_.;.¢2 .+”1_2+%) + Bsinzé. (4.24)

Here the first term corresponds to the total panel deformation
with respect to the symmetric form and the second one to the asym-
metric component. Since the root for u, independently of the pa-

rameters of load ¢ and curvature &, is equal to 7 then the sym-

metric component of deflection (4.24) is a linear function of ¢ .

Equating the expression under the root in (4.23) to zero, we
obtain the following upper and lower values of the critical load

2
o e M P (6+27r2) T 167

15+ 272 15 + 272 15+ 2722k
For
1/2
o272 (15 + 27:2) /
k> 5 ~ 904
3+

the values of g are real.
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Results obtained from (4.24), (4.23) are given in Fig. 4.15 by
the dashed lines (fo, B are the amplitude of the asymmetric form

in the solution found by Bubnov-Galerkin's method and from the

Fig. 4.15. Load versus deflection of cylindrical panel with respectto the
asymmetric form

exact solution, respectively). The appreciable difference between
the curves is observed only for small 2. Even for £ =10 they are
very close to each other.

Fig. 4.16 shows the relation between the pressure parameter g

and deflection parameter f = f; + f3 of the panel top (£ =0)

plotted according to formulae (4.17). Under gradual loading the
image point moves along the curve OAy of the symmetric

deflection shape. After attaining the point A it moves along the
straight line AgB( plotted according to (4.17) and then upward

along the curve of symmetric deflection. The relation between g,
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and the parameter [ = O.7O7(f1 - f3) + fo is also given in the fi-

gure for k& =1 at quarter points (£ = £1/2). At first the move-
ment is along the curve OA and then the point & = +1/2 moves

along the ellipse-like curve to the right and the point £ = —1/2 to

the left (as arrows show). After arriving at the point B the dis-
placements of both points are the same.

In the upper right corner of Fig. 4.16 functions gy and [=
= O.7O7(f1 - f3) + fo are presented for £ =10 and k£ = 50. For

large values of curvature parameter one of the points (& = £1/2)
has negative displacement at the beginning of stability loss.

N
!

|
/
8 1/1
P

N,
\\-Il

7
B,

Fig. 4.16. Load-deflection relation at midpoint (£ = 0) and quarter-points
(£ = £1/2) of cylindrical panel span for different curvatures
Let us turn back to the case g # 0. The ratio y = f3 /f; for

g/n* = 0; 01; 0352 is presented in Fig. 4.17. Before qq = 6 it
is not significantly different from 1/45 (g = 0).
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Since the term f3 in (4.16) is small as compared with fi, then,

replacing it by f3 = f /45, we obtain

1/2
fo =i[— 16 (1— g4)+ 1072 —ii?] L @29)

3.2\ 7%/ 13572°
The amplitudes fo and f; are real if

2
(—536—3) -—42—(1——%) >0,
1357 3k V4

whence

1/2
_ &) <904 (1 —%) . (4.26)

1/2
213522 (1 2)
134 12\ 7* 7:
Thus, the stability loss with respect to the asymmetric form

under constant pressure takes place for # = 9.04 whereas under
the liquid layer it appears for smaller values of curvature parame-

=== =
0.02
w-o.l q/n‘.-o:sz

-4 -2 0 2 f\\q’

1 1 —0.02' |

-

Fig. 4.17. Dependence of deflection amplitude ratio v = f; / fi on the loa-
ding parameters of cylindrical panel

ter (4.26). According to (4.10), we shall have for v = 0.3
g/z* =01nyb* [(ER®).
When, for example, E = 2-10% kgf/em?, b=20cm, n =20,
y=10"3 kgf /em®, /A =400, then g/x*=0352 and the mi-

nimum value of curvature parameter for which stability loss is
possible with respect to asymmetric form, is & =725
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Fig. 4.15 presents the relations between g and f, for k=10

and g/z*=01; 0352 plotted according to the equations (4.25)
g

(dashed lines), (4.14) (dotted lines). These curves are significantly
different from the curve with 2 =10,g =0. More detailed

9%

1
e ——- g/Y*=0.1
——  oA*=0352

10

/
7
4

75

© ©w
%
/..
-
3

5.0

\
N\,
- g
w0
k B
-~

W‘?
\
\

Fig. 4.18. Load versus panel deflection with respect to the asymmetric form
for various curvatures
graph of function fy = fz(qo, g, k) is given in Fig. 4.18.

In the case when the last term in (4.1) can be neglected
(I >> b), we shall have (instead of (4.7, (4.8))

()" -(3) e -efph=-ssaoe(j-%)

/4
(4.27)

GG R (R ]
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Equation (4.5) remains unchanged. From (4.27) for u=n we

have
1/4-3
i1=6— eV /ﬂ) (4.28)
3r n +4g
2 2
R b —qo—g(l/4+5/97z ) o

1357 z* +4g/81
Using the approximation f3 / fi = 1/45, from (4.25) we obtain

1-g/x* 134 32 7’ -qo+g(3/x° -14)

=8 T 1353, 7t +4g
64 [7" 40 +g(3/n% - 14)] " @30)
or” (7r4+4g)_2 |

The upper and lower critical values are found by the following
formula

1/2
134 3 | _ _(135)2 x° ( ~ g)
( +4gf)135 {l+[l 132) [op? 1 i :
The relation (4.19) can be derived from this expression. Thus,

the critical value of curvature parameter remains the same as for
(4.19).
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§5. Stability of a cylindrical panel loaded by pressure

of a compressible fluid

Stability of long shallow cylindrical panel under pressure action
from its buckled side is considered. A weightless fluid is in a her-
metically sealed cavity with rigid walls (Fig. 4.19). The fluid may
be compressible or incompressible. The pressure in the cavity is

generated by a slow fluid supply. It is
assumed that in the course of rapid pa- \é

X jE
nel buckling the amount of the fluid in —
le——2b m

space does not change (the supply is
terminated) [2]. Vo

Let pg, Vo and M denote the

AAASSAARANL NN,

d

Fig. 4.19. A scheme for tes-

pressure, volume and mass of the fluid, ting stability of cylindrical
¢ panel
respectively, at the unstressed state, m"

the mass of the fluid additionally supplied to the cavity after the

panel starts buckling, v, p* the corresponding changes in

volume of the cavity and pressure in it, respectively.
Let the pressure p in the cavity vary-in the course of loading

with respect to the adiabatic law. Then, according to (0.8) from
Introduction, we have

3 l+m/M0 g
P="Po [mﬁ/o_] ; G.D)

when 0<m<m", 0<v<v®, po<p<p", and when

m=m"+0,v>0v", p<p’.

Thus, the mass of the fluid m supplied to the cavity may be
thought of as a control parameter in this problem instead of the
pressure difference.
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Allowing for the fact that for the shallow panel

b
V= Iw dx,
-b
where 2b is the length, w the median surface deflection along the
normal, we represent (5.1) to terms of the third order as

b
K
P=DPm —ﬂ—jwdxx
Vo
-b
K‘+1b (x +)(x +2) 2 ;
X 1——jwdx+ dex ' (5:2)
2Vo b 6Vo2 b

In the equations describing the bending of a shallow cylindrical
panel (4.2), (4.3), the external pressure is taken to be equal to the

pressure in the fluid prior to panel deformation, i.e. py. The

membrane force N is taken with a minus sign for compression.
Let us introduce the dimensionless values

2
sox p_Rw PR qo=poRb2
b’ bz’ m D ’ D ’
b =Y L _ab® 2 Nb®
0= 3 Rh’ D

In the case of a hinge support, we take [ in the form (4.4), sa-

tisfying conditions w = d2w/ dé 220 for & = 1. Substituting
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in (4.3) and satisfying conditions « = 0 for £ = *1, we obtain

u® =3 - B3 (o v i) 69

Integrating (4.2), (5.2) by Bubnov-Galerkin's method, we find

[ o
2 2 2 /—l 1 H —q qO’
ICN G e
(752—#2)1‘2=0’
where
' 1
4—40=4m‘40"t14m(fl—§f3)+
1% B - %"
+t9qm (fl—gfa) "tsqm(f1—§f3) : (=B)
Ax 4\? K9 4\3 K3
==K, ty=|=| —, ty=|=] =,
U /(3 ug /4 Uy

Kg = éx(x+l), Ky = -é-l(‘(l('+1)(l(‘+2).

Here

For an arbitrary changeable smooth function ¢ —qy and

fo =0, u # 7 we come to the problem of bending and stability

of the panel with respect to the symmetric form. Fig. 4.20 shows
the solution of the corresponding problem for a nondimensional

curvature R = 8. The curve 1 is plotted in coordinates g — g

and [ = f; + f3- (dimensionless deflection of the panel center).
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The pressure ¢ — g changes according to (5.6). With an incre-

asing supply of fluid mass m, the pressure ¢ — gy on the rigid

panel grows from zero to

K
Rb? m
—-qo = —— l+—~| - ‘ 5.7
dm =40 ="~ | Po ( Mo) Po (5.7)
The gauge pressure ¢ — g in the cavity with a deformed panel is

increasing according to the formula (5.6). The image point moves
along OA. When the pressure reaches the upper value of the criti-

cal load (q - ‘70)*’ we have

Im = %[(q - qo)* + 40]’ (5-8)

where
A=1- tl(fl* —%fg) +t2(f1* —%fs*)z _tS(fl* ‘%fzz)s-

This is the limit value of ¢g,,, which then does not change (the
fluid supply during the panel stability loss is negligible). The cor-

responding value of m" may be found by substituting (5.8) into

(5.7). Given q;,,, one can plot the relation between load and
deflection by formula (5.6).

To plot this relation approximately, let us estimate the ratio
f3 / fi following from the two first equations of (5.5). We obtain

I3 24847

v=—= . 5.9
h 27222 - ;12
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The plot of (5.9) is given in Fig. 4.20 on the right. The limit
value of x is equal to z. This is the reason why the curve for

u > 7 is not graphed. For £ = 8 the limit value is yzz 75. In
the interval the maximum ratio of y = f3 /f; in absolute value is

0.013. That is why the terms including f3, f3 are dropped in

formulae (5.8) and (5.6). Moreover since f,* is relatively small (as
seen from Fig. 4.20, f;" = 0.28 for k = 8) we retain in (5.8) only
terms of order not higher than two. So, we have (f = f)
4= o = Qn — Qo — 11amf +toqni” —t3qmuf>,  (5.10)
where
. (1-490) +40
s iy SR L
These simplifications are valid in the case of compressible fluids.
An example. If k = 4b%/(Rh) =8, h/b =1/25, V, = b%/2,
po =1kgf/em?, E = 2-10% kgf/em?, v =03, k =14, then
b/R =8h/4b =008, /R =0.0032, ko =168, k3 =19, q¢ =
=po Rb%/D =109(po R/Eh)(b/h)* =106, ug =625, t =
=0.285, to = 0.070, t3 = 0.016.

(5.11)

Making use of tables given in [4], we find (q - qo)* =416,

f* = 0.285. It follows from (5.11) that g, = 5.69. The equation

(5.10) gives the curve 2 in Fig.4.20. Hence, the image point will
move along the curve OAAs. After reaching the point Ay, the def-
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lection increase may be obtained only by additional fluid supply.

The axis of ordinates is g, — q.
When x =7, V) = b2, and other parameters are the same,

then xo = 28, k3=84, uy =125, g, = 636, and we obtain

the curve 3. With decreasing the cavity volume (or increasing x)
the load variation in f becomes closer to the curve AB and stabi-

lity is lost. In further decreasing the volume 1/, the slope of pres-

g NS 10 i
\ A 14 K
4 8
[ — AZ
3 C,\ \Xol 2 6
: 1 )ic 2\ As \4
k=8
i 4 3
L Ci B y

Y 0.2 0.4 0.6 0.8 f -0.01 0 0.01

Fig. 4.20. Load versus deflection at the middle point of the span and ratio
of deflection shapes as a function of panel compression parameter

sure CC| may be deeper than that of the curve AB. The panel
slowly goes down only with additional supply (C’C{). In this case
the value of the critical load is difficult to obtain experimentally.
By terminating the supply the process of deformation may be
stopped at any intermediate state.

Finally, when a fluid with good compressibility (for example, it
has a high volume content of bubbles) is in a cavity with large
volume, then deformation takes place along the way OAA4. And
the effect of panel snap buckling is observed.

Let us consider the asymmetric form of stability loss (in

equations (5.4), (5.5) u=nr, f2 # 0). As shown in previous
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paragraph the solution has the form
Py el O wo)|: 15 = 257" - (a-90)]

fs/fl —1/45» (5.12)

1, 32 134/ o
= +4|- - -
2 '4[ 367 ' 37° 135 (7" ~a+40)

1/2
Seer-ara]

The relation between g — g and the deflection in the center

[ =1 + [z (OAgByg) as well as at quarter points of the panel

span length (movement along OA then along the ellipse-like curve
up to B) are presented in Fig. 4.21 for the nondimensional cur-
vature £ = 15. The latter graph is taken from the Fig. 4.16.

With loss of stability the pressure ¢ — g according to (5.10)

and (5.11) changes along AgA; (for the center) and along the
ellipse-like curve from A to B; and then to By (for the quarter
points of the span). The movement upward from the point By

takes place only with additional fluid supply. The curve AgB| By
corresponds to the following data:

k=15, h/b=1/25, b/R =015, h/R=0006, gy = 0567,

(a-q0) =84, f* =01, k=7, ug =125, qp = 962.
In the case of a large ratio K'k/ ug , a greater number of terms
should be taken in the expansion (5.2).
As in the case of symmetric deformation the stability loss is not
observed if, according to the formula (5.10), the slope at point Ay

is greater than that of AgBo. With additional fluid supply the
panel slowly goes down and the mentioned curves intersect, for
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example, at D (curve CCy). The mean displacement of the span
quarter points is determined by the position of D; while the
amplitudes of deflection with respect to the asymmetric form are
equal to the lengths DDy and D{D3 . Thus, after the pressure

g§\~

75

NSNS .

Lol SEONT Tha i
AN

BN \1

Fig. 4.21. Load versus deflection for panel

reaches the value (q—qo )*, a modest change in fluid supply may

cause small deflection with respect to the symmetric form but a
significant deflection with respect to the asymmetric form.
According to equations (5.12) and (5.10), the slopes are deter-
mined by
5

tgp = . tger=(f - tof").

644,
When the pressure reaches the value (q - qo)‘ the buckling takes
placeif tg¢o; <tge orif

t—tof" < 37[5/(64(]*,,,). (5.13)
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Allowing for (5.11), inequality (5.13) may be rewritten in the form

oA +1) ] 3 T

K * /4 ﬂ'

Z[l" 7l f]<256[(" q0) +d0+ g1 ] '
(5.14)

It follows that the critical value of [K/uo] may be found on

exceeding which the stability loss in the sense mentioned above
does not take place. In the example considered above the second
term of the left side of (5.13) and (5.14) is small so that the critical
parameter is determined by the following simple formula

[K/uo] = 3%6/(256(1*,,,) =3 K )

When panel is loaded by an incompressible fluid supply, the
condition (4.5) from the Chapter III should be met. The panel
may buckle with respect to asymmetric form if the fluid is
supplied even after reaching the point A¢ in Fig. 4.21. Buckling
with respect to the symmetric form does not occur.



152 CHAPTER IV

In the case of cylinder completely submerged in fluid the solu-
tion has the form [1].

0o= 7s, Xg =Lsinzs, zo = L(l—cosn's),
3 V3

Ug =_Lsir17ts—Lsin27rs——2—1—s, to - - e L

2 4 7 Tt 2%

In the case of partial submersion of a cylinder in a fluid the so-
lution is

fo= 7S, Xg = Lsinzs, 2o =L(1- coszs),
n r

)
0 for 0<s<s"
. . * . . * *
sin zs —sin s sin2zs —sin2xs s—S
ﬂ'2 47:2 27
| for s* <s<1|,

to =O.

Ug = 9

2. A long cylindrical shell containing fluid rests on rigid foun-
dation. The weight of the shell is assumed to be small as compa-
red with the weight of fluid contained in it, and is neglected. Only
one cross-section (or ring) may be considered, as shown in
Fig. 4.22a. Since the system is symmetric about the vertical axis
AC we determine the force factors only in half the shell
(Fig. 4.22b). An undeformed shell equilibrium is the zero appro-
ximation in the corresponding problem of hydroelasticity. More-
over, determination of circular, transverse and bending moments
for an undeformed cylinder is of independent interest in the case
of large bending stiffness [7].

There is no vertical force at point A while it is equal to the line-

ar fluid weight n'yR2 /2 at point C. The sum of forces T4 and
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T, is equal to the total hydrostatic pressure along the length AC
Tq+Tc = 27R%. 6.1)

The gravity center of half-circle area is away from the vertical
AC by the distance 4R/(37). Hence the moment of the liquid

weight about point C is equal to (2/3))/R3. Moment of the

K

a)

Y
T \\4
M

Fig. 4.22. Rigid cylindrical shell with fluid on horizontal surface (2) and
notations (b) '

hydrostatic pressure is equal to (4/3)y R 3. Equating the sum of
all moments to zero, we obtain

My —2T4R-Mc +2yR% =0. (6.2)
The total moment of all forces about the shell point with the

central angle ¢ is

M=My —TAR(I—cos¢)+yR2(l—cos¢—gsin¢). (6.3
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Making use of (6.3), we have

w
[ Mdp = ﬂ(MA —TAR+%}/R3) =0,
0

- 6.9
J M(1 - cosp)de = énR(TA —% R2) = 0.
It follo(\)ws that
Ty = %yRQ, My = iyRs . (6.5
From (6.5), (6.1), (6.2), we find
z. =—i-yR2, M = %yRs. (6.6)

Thus, the membrane force and bending moment at point C are
greater than that at the upper point A by factors of 1.66 and 3,
respectively.

Substituting (6.5) into (6.3), we deter-
e mine the bending moment as

........ _1 3(_1 il )
M—-2yR 1 5 Cos@ — gsing),

- - -

which is shown in Fig. 4.23. The maximum

ME T stress at point C is
Fig. 4.23. Diagram of R 2 R
bending moments in : Opp = },—(5 # 18 —) )
cylindrical shell con- 4h h) "
taining fluid where A is the shell thickness. For the

usual values of various dimensions, the
stress due to the membrane force 7 (the first term) is negligible

as compared with that caused by the bending moment.
When the shell weight 27 Rhy ) is taken into account together

with the fluid weight 7R . ¥, the bending moment is
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M = (—;—}/R3 + y0R2h) (l - —;—cosqo — @sin (p) .

If the shell is partially filled with fluid (Fig.4.24.) the bending
moment is [7]

3 .
MAB=}/R hB —(n—(p*)cosqo*—sin(p*+—1—sin2qo*+
V4 2 4

4
Mpc = Mpp +

¢ 13 a
+ Z-2 135in20" +Zcos? p* —F—cos 29" |cosp |,
( o vl P e ) (p}

+7—1:—3—[ 2cosp* —cos " coé ((p - ¢*) - (q) - (o*)sin @ —cos (p].
When the shell is half-filled with fluid (¢* = 7/2) we have

3
Mpg = 18—(——1+§cos¢)

P!
3
YR [ 3z ( ) , ]
Mpr =——|&—-1-="Fcosp+=|=—¢@/sing|.
BC 4 3 ¢ 9 \9 ¢ @
The bending moment distribution in this case is shown in
ﬂ) M, ] Ta b) M, Ti
A

&

c
M. Te To
Fig. 4.24. Bending moment diagram for cylindrical shell partially filled .

with fluid

Fig. 4.24b. The maximum bending moment (forg = 7) is here
less than that in the case of a totally filled shell by a factor of 2.45.
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EQUILIBRIUM OF MEMBRANE SHELLS
CONTACTING LIQUIDS IN CONTAINERS

§1. A long cylindrical shell containing liquid

Because of the large length of the cylinder only one its sections
need be considered. Moreover we may consider a membrane ins-
tead of a shell. Assume the weight of the membrane to be negli-
gible. So, a flexible closed membrane of length L is on a rigid sur-
face and subjected only to the hydrostatic load of the inner liquid
(Fig. 5.1). The origin of the coordinates x, z is placed at the up-

2 - HO % X

777774 /II/III/&II///I]/ I/lllll/é//lll//la s

c

Z

Fig. 5.1. Long cylindrical soft shell containing fluid on the horizontal surface

permost point of the membrane. Notations are given in Fig. 5.1.
Note that investigations of form changes of soft shells are per-
formed taking into account their deformations including large de-
formations (for example, [9,10]). But throughout this chapter the
shell is considered to be inextensible.
As is shown in §4 of Chapter II, the deformed shape of the
membrane depends on values of constant p and variable yH
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portions of the hydrostatic pressure. The same is true for the sha-
pe of soft and flexible containers for storing and transporting flu-
ids. In the idealized example (Fig. 5.1) the membrane shape, the

height of water column f, in the flexible branch pipe (through
which the liquid is fed) and the height H are interrelated. When
H,/H >>1 the constant portion of hydrostatic pressure in con-

tainer predominates. The membrane tends to take the form of a
circle with a small piece bearing against the rigid surface 2a. If

H,/H <<1 ashallow form appears with a large bearing area.

In this paragraph, the equilibrium of a shallow system memb-
rane-liquid is considered. That is [, = O is assumed. This assum-
ption allows one to put the curvature equal to zero at the upper-
most point of the curve /.

In this case, as follows from previous chapters, p, = y2 and
the equilibrium equation may be written in the form

Tk =yz, (1.1)
where T, k are the tension and curvature of a membrane,
respectively, y is the specific weight of the liquid.

As is known from the previous chapter, dx, dz, ds and an
angle ¢ generated by the tangent to the curve /° and the axis x

are related to each other as follows
dx =cospds, dz=sinpds, dp=Fds. (1.2)
Taking into account (1.2) and the fact that 7 and y are
constant, we find by differentiation that
i ak dk _
do I
Integration with respect to ¢ gives &2 = 2(C —cos @) 7 /T , whe-
re C is constant.

2 sin Q.
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Further consideration of the problem is given fdllowing [1].
The curvature is taken to be £ =0 for ¢ =0 and for conve-

nience a new angle is introduced, 8= /2.
Then C =1 and £ = 2./ 7 /T sin @. Comparison with equation

(1.1) gives | ) |
2=2,y/Tsind . (1.3)

Putting & = 7/2, we obtain the value of the height of the upmost
point of the membrane '

H=2JT[y, z=Hsind. (1.4)

Thus the system height and the membrane tension are inter-
related. From these expressions together with (1.2) it follows that

k=(4/H)sin@, ds=(H/2sinb)do,

ds—dx =Hsin0do.
Integrating the last expression between the limits from the
uppermost point of /7 (s=0, x=0, 8=0) to the point of
contact between membrane and horizontal foundation (s=1/,
x=a, 8=r/2), we find the relation [—a=H , where [ is the
length of the membrane element between upmost and contact
points. Since L = 2a + 2/ then 4
da+2H =L, - (1.6)
- Consequently, the perimeter of the rectangle with base 2a and
height H is equal to perimeter of the membrane L. This rectan-

gle also has one more curious feature [1].
Integrating the expression

a iy = <H2/4)cos pdop
obtained from (1.2) with respect to ¢ from O to 7, we find that

(1.5)

the area S is equal to Sg (Fig. 5.24). Consequently, the area of
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the above rectangle is equal to the area S bounded by the mem-
brane. So

%aH =S. (1.7)

This rectangle with base 2a and height /I may be referred to as
equivalent since its perimeter and area are equal to perimeter of

0 S X

a) b) /1.0 d
n s?. /L
X R Y
ﬁ:ﬁff,
' I £ 7,
a
Bp—a : —

Fig. 5.2. Bquivalent cross-sectional areas (2) and dependence of the shell lift
height and the length of contact with horizontal surface on the filling coef-
ficient (b)

the membrane L and to the area bounded by it, respectively.
Elimination of a from (1.6) and (1.7) gives a quadratic equ-
ation in H/L whence

oA T w65
= 4(1i 1 K‘) (K—lSLQJ.
The lower sign should be.taken here because // =0 for S =0.
Parameter & may be referred to as a coefficient of filling of the
long cylindrical container. Using (1.4), we have

/#:%:é@—ﬂ).

These functions are presented in Fig. 5.2b. They are valid when

k<lorl16S <[’

The curve /" may be presented as an elastic line in the problem
of bending a rod (Euler's elastica) (Fig. 5.3a). This will be discus-
sed in more details in § 3. Now we only consider its most characte-
ristic features.
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At the most remote point N (Fig. 5.3b) 6 = n/4 and from
(1.4) it follows that Zy = (\/— / Z)H To find the overall dimen-

sion A we integrate (1.5) with respect to € from zero to m/4. Let
[ denote the arc length OMN. Then we can write

=(1-2/2)H

Now integrating (1.5) between 6= z/4 and 0=rn/2, we
obtain the expression for the arc length NP in the form

—————————— by O
Pl : o
P // ~ M
\
r \\ N
T \

\‘ 777777772777777777777, Y'I
1 & a P

4 2 A

a A a I H - !
R T

Fig. 5.3. Features of shape of membrane shell containing liquid

ly =—(H/2)Intg (#/8). Since [ +ly =1 and, as was shown

above, [ = a + H , we can write

A= a+(——~+ Intg )H:a+0.266H. (1.8)

7z

To find the angle 6,; atpoint M we first evaluate the

length [5 of the arc MNP. By integrating (1.5) between 6); and

/2 we get both I3 = H cos @ and [3 = —(H/2)Intg (HM/.?) It

follows that cos @y =—(1/2)Intg (0,/2). Using the notation

tg(0/2) = e, we shall have v =2tgv. The unique positive
root of the last equation is v = 1915 so that 6, = 0.293.
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The ordinate of M is determined from (1.4) to be
2y = 0.288H. Note that the tangent at the point M cuts the

base (z = H) at a distance of 1.074H from the contact point P,

§2. Volume of liquid in a rectangular

cushion-shaped container

Suppose again that the shell of ‘a "cushion" is flexible, non-
tensile and weightless. The cushion may be made in a variety of
ways. Consider the case when two unstrained quadratic sheets

with sides L/2 are fastened along their edges. By feeding liquid
into the volume between the sheets, the cushion is formed. Let it

rest on the horizontal foundation. 4 ———

For the hydrostatic pressure we &=

take the same assumptions as in : \\.\ 2

previous paragraph (M, <<H, | Lo -
6 2

Po <<V H). In such a formula- Fig. 5.4. Volume of aliquidina

tion in [1] the volume of the liquid shell as a function of its lift height
contained in the cushion is found

approximately. The results of this work are given below.

The pressure force on the foundation is equal to ;fHazc,

where a is the distance between the center of contact area and its
boundary measured in that plane of symmetry which does not
contain cushion angles, ¢ is the coefficient of the completeness of
contact spot area. The latter depends on the volume V' of liquid

in shell. If there is no liquid inside (V = 0) the area is equal to

4a% and ¢ = 4. For a maximum volume V of a nontensile shell,
the contact spot tends to take the form of a circle with vanishing
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radius @. And ¢ = 7. Thus 7 < ¢ < 4. Actually the coefficient
¢ is closer to 4 than to 7.

Since the liquid weight is ¥V the condition for equilibrium of
the whole system is

yV = ;/Hazc. 2.1)

To make approximate calculations, suppose that the curves of
intersection of shell and planes of symmetry which do not contain
the angles of the cushion, coincide with the cross-sections of long
cylindrical shell with perimeter L (§1). This hypothesis is purely
geometrical and does not use any assutmptions’ about the acting
forces. According to this hypothesis the equahty (1.6) holds. It
may be rewritten in the form

4qV:H(L/2—~H) _ (2.2)

where g =1/¢ (1/4 < q <1/rx). ,
The cubic corresponding to .(2.2) is shown in Fig. 5.4. The
maximum value of 4qV takes place for H = L/6 and is equal to

LS/ 54 . Only one part of the curve, from H =0 to H=L/6,

makes sense. It is marked in the figure.
Introducing as before in the previous paragraph, the coefficient

of filling of the container, x = 216qV/ L3, we have by defini-
tion 0 <k <.

The tension T is determined from the assumption that a
section of the cushion is a section of a long cylindrical shell. Since
the fabric and film materials have greater strength in an uniaxial
stressed state than in the biaxial one, the least strong point of the
cushion is its uppermost point where its stressed state is biaxial.

The overall dimension A is found by formula (1.8). As to the
stressed state of the cushion angles and their influence upon the
value of the volume, they cannot be determined within the limits
of the given approximate solution.
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In conclusion, utilizing the same

approximation, we give the genera- -
. . ;4 13 \ I
lization for rectangular cushion with Ry /
o . %
the perimeter of middle lines Ly, Ly of—L—— A -
; 2 e
T

(Ll > LQ). The area of contact spot

. | Fig. 5.5. Volume of a fluid in a
is equal to GO ety where a, ag ar® cushion as a function of its lift

the dimensions of contact spot with

base in both planes of symmetry, ¢ is the coefficient of comp-
leteness of the contact spdt area. As before for the square we have
7 < ¢ < 4. Instead of (2.2) we have '

4qV = H(Ly /2~ H)(Ly /2 H). @3

The cubic of (2.3) is shown in Fig. 5.5. The extremum points of
4gV are obtained from the following expression

H=%(L1 +L2)(1im), m= \/1’~3L1 L?‘/(L1 +L2)2 :

Since 0 < Lo /Ll <1 then O <m <1/2. In the expression for H

the lower sign should be chosen. And the extremum of 4qV is
defined by ‘

864 qV/(Ly +Ly)" = (1—m)®(1+2m).
Oniy that part of curve in Fig. 5.5 makes sense which corres-
pondsto 0 < H < H*, where H™ = (Ly + Ly) (1—m)/6.

For given L; and Lo the limit value of system height /™ may be

found. Then the volume of cushion V is determined from (2.3)
for any intermediate value H .
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§3. Equilibrium of a cylindrical shell under total

hydrostatic pressure

In previous paragraphs of this chapter the simplified formula-
tion of the problem of equilibrium of long cylindrical shell and its
solution for approximate analysis of cushion-like container have
been considered. Clear results have been obtained. Now we shall
consider the problem in a more general statement, namely we re-
move the restriction, taken in the beginning of § I, assuming the
absence of a constant part of the hydrostatic pressure. Conse-

quently, arbitrary values of both the liquid column height H,, in

the branch pipe and the shell height H are allowed Fig. 5.1).
The total pressure on the contour is

=y(z+H,). GB.1)

Values y, H, are given. Coordinates of the membrane points x,

2 and the tension T are unknown. But the latter is assumed to
be constant along all the contour.

Many papers are devoted to solvmg this problem. Reviews may
be found by the interested reader, for example, in [4,8]. Following
[7], we give here only a brief summary of some results.

The angle « is introduced in.accordance with the Fig. 5.64.
For the membrane point of the corlespondmg angle « the
coordinates are

/782y 54,

| (3.2)
7 = \/Hf +2(T/}/)(sina0 — sin a:) ~ H,

and the arc length L counting off from the point O is

L=—+Tk%fysF. (33
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The following notations are used

47‘/7/ T
kz 3 ==, = =« ’
H2+(4T/7)sma goo PTaty W Q)( O)
A0 8) = 2=E2 P )~ L B(p.8),

5A = Alp, k) - A(¢O,k), GF = F(gp, k)= F(po, k),
where ¢ is the amplitude (this angle differs from the angle @ of
§1), k is the.modulus of the elliptic integrals, F(p,k), E(p,k)

a) b) C,h
o —
!

TO F 3:: X — .cn
ok 0

ko o == e

LT

Fig. 5.6. To determining the shape of a membrane shell contacting a liquid

are incomplete elliptic integrals of the first and second kind,
respectively.
The area S bounded by curve L and axis 2 is

S= i(sin2goo —sin2<o~25A\/l—k‘9‘sin2 go)A (3.4)
/4

A linear dimension d is introduced which, depending on the
problem under consideration, may be perimeter, helght square
root of the area occupied by fluid, etc.

In nondimensional parameters

=2/d, n=x/d, 1=1/d, h,=H,[d, t=T/(rd®)
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formulae (3.2) and (3.3) take the form

n=—+1tk? A, | = —+tk? SF, - (3.5)
§=\/hf+2t(cos2go~cos2go0)—hu. o
Moreover »
5% _ 4¢

(ﬁ_f +4tsin® oy )

It has already been mentioned in §1 that the form of the field
of the hydrostatic load is the curve of elastic rod bending, the
Euler's elastica. The curves of the more general equation (3.5) are
also elasticas. Reducing them to standard form, the origin of coordi-

nates is placed at the point where @ = —7/2, ¢ =0 (Fig. 5.6b).
Axes 77y, &) are introduced, the second one being directed up-
wards. The distance between the plane of hydrostatic pressure (free

9  e=0° ¢, b 0xe<o0’ ¢,
41 . 1
N [)

7 0, 7, 1 0, T,

.Flg 5.7. Determlmng the shape of a membrane shell under the action
of hydrostatic pressure

fluid surface) and the axis 7; along the vertical line is taken as a re-
ference linear dimension. Then the equation of these elasticas are

s = (R22) Alp, k), & =1-y1-Esin g,
In Fig. 5.7 the elasticas are presented for ¢ by the formula
k=sin@.If £ <1 the elasticas are periodic non-inflectional

curves (Fig. 5.7a). If k% =1 there is one curve asymptotlc to the
plane of hydrostatic pressure &=1 (Fig. 5.7a).
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- In tables, elliptic integrals are given for k% <1.When % >1
the new modulus £ and the new angle @ are taken in accordance
with the following relations

" sing = ksing, F(p,k)=kF(p,k),

1—3‘2
k= Blp k)= 1E(¢75)+( ) F(p.k).
The ordmary equations of elast1cas in thls case are
. 1 e . % .
n = ﬁ[2E(¢),E) - F(go,]a], &=1~-cosy.
The formulae (3.2)—(3.5) also change their form. This is the rea-
son why in literature there are several forms. Moreover, the for-
mulae are presented in terms of Jacobi's elliptic functions, Weier-
strasse functions.
a) C1 oo<'9‘<450 b) C1 §=45o-
2r 2
1 A/j\ " 4 ‘m
oo + 2 3nm

Fig. 5.8. To determining the shape of a membrane shell under the action of a
hydrostatic pressure

When %2> 1 (E <1) the elasticas are periodic inflectional
curves with an inflection point at the level of hydrostatic pressure
(£,=1). Below the inflection point (fl £ 1) the shell has an in-

ternal positive pressure, above it (c_fl b 1) an external one. Some

elasticas are presented in Fig. 5.8. | ‘
The data of this paragraph will be used in the following para-
graphs of this Chapter.
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§4. Analysis of partitions separating
compartments with liquid
Compartments with soft partitions for fluid are used, for exam-

ple, on small fishing vessels. Fig. 5.9 shows the notations and
coordinate systems.

(04
t l [ 1t
b=0,33
N Ral T
2,0 ‘ 2 6=0
NN \
9=40§
18 h,=0936” | 1-0.4 \
, \ { \
' 0=b
1.6 ; \ '\L;‘
N 0,5
o AR
1.4 0 R A
—}:‘_ﬁ;‘
‘,_—____,ao X
12— R
=L
o.<0
"} 9
1,0 \ -
\
0,8
1,00 1,02 1,04 1,06 A

Fig. 5.9. Cross-section of a soft container for liquid transport and calcula-
tional parameters

Taking, for reference, the fluid depth H in the vessel without
list, we introduce, similarly to §3, the nondimensional parameters

n=x/H, E=z/H, h,=H,/H,
t=T[/yH?, A=L/H, b =B/H.
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The following set of equations is derived [7] for the vessel wit-
hout list

. __ 4o o RPSF(p k), _ k25A(p, k)
= N —Al = 7 . \¢ ] T 3
T — A 2(4, - 4o)’ 24, - 4o)
4.1)
where
A4, -—:'\ﬁ-kz sin? @1, 4o =\/1-—k2 sin” pg , (4.2)

5A(g, k) = A(¢1,k) - A(gpo,k),
SF(p,k) = F(p1,k) - F(po, k).

These functions introduced in the previous paragraph are taken

for angles @q, @) at points O and 1, respectively. These points

are shown in Fig. 5.9. Nondimensional tension is calculated by
the formula "

PR = (4.3)
4(4, - 4y)

Numerical solution gives @q, @1, k.

For small positive pressure B2 5 , it is more convenient (see
previous paragraph) to use other variables k =1/k etc. Then
instead of system (4.1)—(4.3), we shall have

Cos @y 5F(§Z5,E)

/’Lu = — e —'/11 = ===
B cos @y — COS @g 2k(A1 = Ao)
- SF(p: k) — 26E(@, k)
# 2%((:05?0’1 = cos@o)

, (4.4)

= L ‘
e (cos @1 — cos 50)2

y
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These formulae are valid if the partition does not adjoin the
second bottom, that is if

<_k2F(¢0,k‘) < F(@o.k)

Ay S g B == .
: 24 2k cos @

Function #(1) is given for & = 0, A, = O in the upper right cor-

ner,bf Fig. 5.9. Parameter A = 4, / v1+0b f‘ is used instead of 1.
For the vessel with list 8 (Fig. 5.9) the positive pressure is
calculated graphically. The dimensions Bg, Hg (by = By /H ,

ho = H 2} /H ) may be also readily found from the figure. The

resolving system of equations is

Al_ —-1= h k25A(¢’.k)l — by
Ao hy’ 24 - hy
2
R25F(p,k) M - (khu]
249 2 \240)
Numerical solution of the system is presented on the left side of

Fig. 5.9.
For any list angles, sufficient accuracy is provided by the

formula [7]
f = @ + hu) (1 s blz)l/Qq(/ll),

where a(/ll) is found from the following equations

1 p __ A

Q.= R :ﬂ, = —
2sin - sinf :. /1+bl2
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The values of shell tension T = y 2¢, which have been found
here, are not, of course, determinant since in practice their maxi-
mum values appear during the vessel's rolling. But dynamic prob-
lems are beyond the scope of this work.

§5. Freely lying containers -

An example of freely lying container is a cushion (Fig. 5.10),
the equilibrium of which was considered in §2 of this chapter. Be-
sides the cushion-like containers the collapsible tube-like contai-
ners are widely used, which are made by
fastening two rectangular sheets along
their edges. A large number of other
forms are also known.

To avoid fluid oscillations (in other
words, in order to increase the stiffness |
of the whole system), the vessel's contai-
ners are filled so that they have rather large positive pressure.
That is why they are made out of strong materials. Volumes of
transporting containers usually vary from Ilm3to 15m3.

There is a large variety of such containers for ground storage
of fluids. Theit volumes exceed 200 m3 . Features of such con-
tainers are small positive pressare and therefore shallow forms.
That is why these containers are usually made out of relatlvely
weak materials.

A great amount of literature is devoted to static and dynamic
analysis of freely lying containers (see for example [4,5,7,9]). This
analysis is based on the deformation model with a cylindrical form.
Thus this approach is the same as was used in § 2 of this Chapter.

Now, following [7], we give, without der1vat1ons the solution
of the problem of equilibrium of a container on a horizontal rigid
foundation. The notations to be used are: S the area of container

Fig. 5.10. Freely lying con-
tainer for fluid
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section, d the diameter of circular shell section, 7', 7,, the annu-

lar (transverse) and longitudinal shell tensions, respectively. The
other notations are shown in Fig. 5.11a.

b)
a
) 12— =
1.0
h
08
i =
= 5]
0.6 /
0.4 !
Vi
02
| —|

0 02 04 06 h,

Fig. 5.11. Section of a freely lying container (a) and the desired parameters
as functions of relative fluid height in a branch pipe ()

Using the nondimensional parameters

B
p=f g, ="t p=8 p, =2
d’ d d d

S T o
S = — t:—, t =
a2 vd? " yd?®

the calculational formulae take the form

f =2 _(z 4 k-
=it =) e r

s=gmw,h=2@—¢ekﬂJﬂﬁﬁ
b =2tk [A(R) - A(m/A,B)], by = 24t6> AR).
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Here K(k) is the total elliptic integral of the first kind. The func-
tions A, E are given in §3 of this Chapter.

Curves plotted by these formulae are presented in Fig. 5.11b. It
is seen that with increasing fluid height in the branch pipe, the

nondimensional values of tensions £, f,, height of the container
A, and area of its cross-section § increase and the rate of this in-
crease is greater for smaller values of /. As to overall dimension
B (Fig. 5.11a), it decreases with increasing fluid height in the
branch pipe. Note that the tensions keep on growing to the right
side exceeding the boundary of the figure, while for A, > 0.6 the
value of section area remains constant.

If the foundation is inclined the container rolls over. When
there is a wall the shell leans on it (Fig. 5.12a). Let € denote the

b) | T
g o /)/ i
gl V4
orsl A8 10‘/ %
’ /9%7
lx ] /
037 <17
6’=10 L1 %
031 s
: B ////
0,2'8 ’rﬁ/? A
0,25 i ]
ol

: , 085 089 083 K
Fig. 5.12. Section of an inclined container () and the desired parameters as
functions of the coefficient of filling for different angles of inclinations (b)

angle of inclination of foundation, and Lgs = Igcd the height

of shell contact with the wall. The filling coefficient x of the
container may be introduced here as earlier in §l so that

x=4S/nd?.
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Fig. 5.12b shows the nondimensional values of tension f and
contact height /g versus the filling coefficient for different ang-

les of inclination. These parameters grow rapidly as the filling
coefficient increases. When the inclination angle of the foundati-
on increases, the nondimensional values of tension go down while
the contact size, clearly, goes up.

§6. Insertable vessel containers ,

Among the insertable vessel containers, the following three
types may be noted: 1) the close-filling, all surfaces of which"
closely adjoin walls, bottom and upper partition of compartment,
2) the tensioned, the upper surface of which does not have contact

d)

a) Ig C) h Sbl A“)\/ hb
. OfF = 3 hy I '// o /|
=N 0=40" 04110454
_ ﬂ{____?_? o wh YIS 4
s =1 12—+ —
B |12 [ 4
Z 1.0 7\ o 7
: = 0.8—~4 // Y VA
b) 0 " o / / /
off 05— L’ | o2llas i 1.2
= 04 % a4
\B 04— - /Ngm:_o
02 04 // 11
‘ ' t(hy), e~40 n=1
-0 02 04 06h,, \t(hu) e—4o n—za

0 05 = 10 hy
Fig. 5.13. Cross-section of insertable containers (a,b) and the desired para-
meters versus positive pressure (c,d) .

with a compartment and is tensioned by positive fluid pressure
(Fig. 5.13a,b), 3) the close-fitting-tensioned, which have at the
top -both zones free and adjoining to partition. The contamersv
may be combined with soft and rigid elements;



EQUILIBRIUM OF MEMBRANE SHELLS CONTACTING LIQUIDS IN CONTAINERS LIS

Now consider the analysis of stressed insertable containers [7].
Consider the results obtained for the straight vessel position
(Fig. 5.13a). Let L denote the full perimeter of the shell cross-

section, L the perimeter of the upper part, AOA and Sy, Sp

the areas of sections of the whole container and the upper part,
respectively. As a reference linear dimension we take the base

width By and introduce common nondimensional parameters

L ' V7 ] Hg
;LZB_’ A Bo =%, Ao =B—u0, h=Bi’ hB:B—B’
0 0 o bo 0
H y i S S
hy =——, t=—"5, spp ===, so=—5.
Bo 7B} B} B}
Then for the planar problem
1 1-£°
L ’ h s 2 t i
ARP[A(R) - A(m/4R)]? k2

NN}
—
o
|
&

o

hy =huo{ }5(2—:%)—1], sg = ————k-2—lt—-2t,

hgo = 2kJE[K(k) - F(n/4, k)], Ay =~ %(z ~ Apo —1),
Sg = Sp +hH =h.'
Graphic relations plotted using these formulae are given in
Fig. 5.13d. For 0 < h,q <1/2 the parameters A g, hg, Sp stro-
ngly depend on A,y. When A o> 1/2 the dependence becomes

slight. As in the previous paragraph, the function t(huo) is
nearly linear:
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When the vessel has a list &, the
nondimensional tension f against

the actual positive pressure £, is,

as for 8 = 0, close to a linear fun-
ction (Fig.5.13d). The difference

between A, and A,y consists in
that the first parameter corres-

ponds to the shell in inclined po-
sition. This curve is shown by

t(h,) for 6 =40, n=1 (n de-
notes the number of containers).
It is clear that A, depends on Ay, 6. Such dependence may

Fig. 5.14. Cross-section of a gro-
up of insertable containers

be found from consideration of the problem taking into account
the fluid incompressibility. An experimental function A, (huo)

may also be recommended. Such a function is shown in Fig. 5.13¢
for index n =1.

S [~
/<o4

: 108) 412
10 i 2

\
\

pa

.
g
///

N\

1,20

O g / \
R /) \ 1,24
/ \
; 757 ; Na=128
0 05 1,0 hy

Fig. 5.15. Dependence of tension on positive pressure in shell of insertab-
le containers with longitudinal diaphragms :
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In the case of several containers in one compartment (Fig. 5.14)
the approximate calculations are made in the same way as for the

single container. By may be taken as the compartment width divi-
ded by the number of containers 7. Containers adjoin along the
circular cylindrical surfaces. For list the function t(hu) may be
obtained by an experimental curve. In Fig. 5.13d these functions
are shown for angle 6 = 40° (container number 1 = 2, # = 3).

For containers with longitudinal diaphragms the nondimensio-
nal tension ¢ as a function of pressure /i, and parameter A is pre-

sented in Fig.5.15. It is characteristic that for A,>1/4 the

function L‘(hu) is linear.

§7. Soft floating containers

Floating containers are used as storage and tow transport. Tow
containers of cigar-shaped form (Fig. 5.16) are used for transport
of petroleum products and fresh water [3,6]. Floating is due to a
difference between specific weights of fluid inside and outside the
shell as well as to arrangement of air-balloons and air-tubes inside
the container (Fig. 5.17).

The analysis of equilibrium of the floating container in a three-
dimensional formulation is extremely complicated. The difficu-
Ities increase significantly in a~dynamic formulation simulating
real operating conditions, particularly the behavior on sea waves.
We shall give below, following [3,6,7], only the simplest static
analysis of the cross-section of the long soft container.

Some notations to be used are: y, . the specific weight of
fluids inside and outside the shell, respectively, d the diameter of
the shell when it takes the circular form, S the area of cross-sec-
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Yz

Fig. 5.17. Longitudinal and cross-sections of a floating container

tion of the container with cargo. We shall also utilize the follo-
wing nondimensional parameters -

B

h _u’ h"‘ﬂs b:'B"s b :—i:

“T Ty d d F 4
H S

f=Lf, hy==Lt, so=—5, t=-L;
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Let us introduce the ratio of specific weights of fluids and
coefficient of container filling

4S8
vk, 220,
Ve wd
Given positive pressure /1, the parameters ¢, k, ky are
determmed from the followmg system of equations

k v Ak) - (401:/’?) _

bV ) Apr) "
W1=%—¢1, sin® ) = (1*")( liJr;VQ—,
ELK(F) - F(qol, B+

2
+kH‘\/ [K kH l//l,kﬁ)] ﬂ'h 1k2k p

Using known values of parameters ¢@,, k, kH, the other
variables may be found by the formulae

t= 4{;’2]32) f—Q‘/—(\/l—kp‘sm P - \/l—kz)

h = f + if\/z(\/l-—k%sing 78 ——\/l~k%{),
b= 2JTkH[A(kH) ~ A(n/4 kg )],

SO,:hl o i [A(E) - A(py, £)] -

1
= sm 2¢,.
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Corresponding plots may be

t —— | found in literature [7]. For examp-
WY T s ) . .
01— \ﬁ ; le, nondimensional annular tensi-
il P—— . . -

04 ~ : on ¢ as a function of filling coeffi-
0,3 \\ﬂ/' cient and ratio of specific weights
0,3 ~~o,5‘\ ” is presented in Fig.5.18. Parameter
e } v = 0 may be thought of as a fil-
02 H— T/ ling of the container with gas. In
0,9 — this case the tension is a maximum.
01— // // sl With iIfI]Cré;SiI;g s(feciﬁc Weigvt\;t;l of
4 : inner fluid, ecreases. en

:’4&J . 1 .
p e S v =1 the shell does not acquire

%07 08 o098 tension.

' ‘ ' t tai filli
Fig. 5.18. Tension as a function of If ths yluss of confainer Hlling

coefficient of container filling for ~coefficient are small (K <1/ 3), ¢
different ratios of specific weights tends to zero for all v. In appro-
of internal fluid to those of exter-. aching K= I The tension valuss

nal fluid .
. rapidly go up.

§8. Containers for load lifting

Consider the equilibrium of a soft spherical container submer-
ged in water, filled with air and held by a load. Assume’ that
holding ropes are continuously fastened to the shell and represent

a conical surface (Fig. 5.194a). Let ¢ denote the meridional ang-
le of the ropes fastened to the shell, Ly be the distance between

the lower point of the sphere and the joint point of the ropes.

The container shell is subjected to internal pressure of air and
external pressure of fluid. Depending on the value of this pressure
difference, the stressed state of different parts of the shell may be
of several types. But here we shall consider such system equilibri-
um in which at every point of the shell only the biaxial tensioned
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state is realized. In this case the shape and volume variations of the
sphere are small. It allows one to consider only the stressed state
of the shell under load, assuming the shell shape to be known. In
such a formulation the problem has been considered in [2].

Note that the problem will not change if the container being in
air is filled with fluid and is suspended by the same ropes
(Fig. 5.19b). The pressure produced by the water column in the

? IS b) )
_——i : o, i
R .
9, 19 R
—_—

/ ) |

| 1Q | |

Fig. 5.19. Spherical container for load lifting in fluid () and container of
fluid ()

branch pipe gorresponds to the constant part of the pressure
difference of the problem shown in Fig. 5.194a.

For the case of a spherical membrane shell under axisym-
metrical load, the following formulae for meridional and annular
tensions may be written

T, = (Ipcos¢d¢)+C) Tg = pR=T,. (8.1)
sin” @

Here ¢,6 are the angular coordinates of the meridian and paral-
lel, respectively, C is the constant of integration.
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If the pressure difference on the shell changes in such a way
~that it is zero at its Jower point and is equal to 2y R at the upper

one, we may write

= yR(l = cos ¢). | - (8.2)
From (8.1), (8.2) it follows that |
2
' yR 2
T, = 2cos ¢ — 3)cos” ¢ + 6C|,
P 6sin? @ [( ) ]

where for ¢ = O the denominator vanishes. For the tension valu-
es to be finite, the expression in brackets has to be zero. Therefore
= 1/6.
For the zone lower than the line of fastening ropes to shell, for-
mulae (8.1) take the form

2 £ ol
T _IR [1_2003 (p)’

¥ 6 - l+cosgp
3 .
Bt s bemps 0]y
6 l+cosgp

(O <p< (00). |
- For the upper shell part (¢0 Se< 7t) the constant C is

found from the condition that for ¢ = 7 the shell tension must
have finite values. This gives C = 5/6. Consequently,

ey 8-
T_:;/R (5+2cos goj,

76 1—cosg
2 : 2 '
Ty = PR (l—ﬁcosgo—«m} (8.4)
6 | l-cosp) -

(goo S < 75)
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In the linear problem the tensions caused in the sphere by the
constant pressure difference

T, =Ty =Ty = po R/2 (8.5)

are added together with the values (8.3), (8.4).
For the scheme in Fig. 5.19b the constant difference and

TN /
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‘Fig. 5.20. Desired parameters of spherical container for load lifting as func-
tions of rope fastening angle ’

uniform tension are respectively po = yHo,.To = yHo R/2.
The tension in the ropes per unit length of line of their faste-
ning is ' :
2}/R2
TT = —-——2—_—.

3sin” @q

If the ropes are directed tangentially to the spherical surface at
an angle @ (in this case the rope length is equal to
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(LO + R)/sin @), the tensions are related to each other as
follows

T¢((00 + 6‘) = T(D((DO = 6‘)+TT,
where the small meridional angle £ points out the different sides

of parallel with angle ¢ . Here the maximum tensions in the shell

may appear. Their values depend on the angle ¢ .
Fig. 5.20 shows the nondimensional values of tensions

T, Ty
t¢ — 9 tg = 9
4y R 4y R

on the lower side from rope fastening line ((p =@o — 6‘).
As is seen, with an increase of fastening angle ¢ these tensi-

ons go up. Nondimensional distance [, = L, /(2R) also increa-
ses since the ropes are assumed to be fastened to the shell tangen-

tially. Nondimensional values of rope tension fr = Tp / (4}/R 2)

and equivalent liquid level in branch pipe h, = H, /(2R) decre-

ase with increasing angle ¢ . These values of A, are found from

the condition that folds do not arise in shell, i.e. Ty ((po i 6‘)+
+ TO = O

For the zero positive pressure at the lower point of the
container, the compressive forces in the shell where the ropes are

fastened are zero for @qg = 81°. If ¢y >81° folds will not
appear in the shell.
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As an example, a container with @o= 60° is considered. In

this case the shell tensions are not so large and the length L, is

- 1.0 —
| / 2R 4
,’ 0.8 /,’
[
,’ P //to
! et 71 A
| g & t+t
n “// /< 0 0
X 0.4 4
\\ ',/ /
,1’ F 02 /J
o | Atte /A At
1

0 01 02 03 O04fy0 01 02 03 {t

Fig. 5.21. Meridional and annular tensions in an undeformed spherical shell

equal to the radius R. To exclude folds, a nondimensional ten-
sion greater than fy =T / (4}/R - ) = 0125 is necessary. Meri-

dional and annular tensions in this case are presented in Fig. 5.21.
Solid and dotted curves show total tensions (together with
positive pressure) and tensions for £y =0, respectively, as

functions of height. These plots may be useful for estimating the
state of spherical container in its submerged static state.



CHAPTER VI

EQUILIBRIUM OF FILMS CONTACTING
A LIQUID IN DISPLACING DEVICES

~ §1. Plane problem of film equilibrium

A device for liquid displacement out of vessel by means of mo-
vement of a separating membrane or film may be such as shown
schematically in Fig. 2.5b or 2.6a. The space above the film is

filled with a gas under pressure p,, which may serve as control

parameter. Under the action of this pressure the film displaces
liquid from the lower space (where the presence of removal pipe is
assumed). The gravitation force may be directed both downward
(as the usual gravity force) and upward (or, under common
conditions, liquid is in the upper space while gas in the lower
one). Correspondingly, the overload factor, used in §4 of Chapter
IV,is n >0 and n <0, respectively.

As in previous chapter, we assume the film to be a flexible and
nontensile surface. In a plane formulation of the problem it may
be considered as a thread. Tensility of the membrane is taken into
account only in the last paragraph. And its large deformations are
allowed. |

As will be seen from the following, there is a lot in common in
behavior of the systems under consideration and those examined
in Chapter Il and V. In presenting the material of this chapter, we
shall follow [2—6]. |
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Points of film attachment to the walls are at the same level, the

distance between these points being 2L . The length of the film L
is greater than the distance 2L so that there are nontensile,
folded states. The film does not touch the walls at points different
from those of its attachment. This problem was considered for the
first time in [6]. |

The origin of the coordinate system x, z is taken in the middle
of the interval 2L with the x-axis directed horizontally (through
the fastening points) and the 2z -axis upward. The hydrostatic

pressure is p = pg —nyz, the pressure on the film is

p"=pe—po+nyz.
The equilibrium equation has the form of (1.1) from Chapter V
with the right side equal to p” . Thus '

Tk = p, — po + ny2, (1.1)

where T is the tension constant along the film, and % the

curvature expressed by the formula
‘ 3

. d%2 d2\? | 2
- kz—; 14| — ,
The condition of nohtensility for the film

5 dz\? c
PR 2 :" ~> 2
Il:lJr(dx) ]dx by AL&ZL (1.2)

and the condition of incompressibility for the liquid

L
I zdx =V (1.3)
—~L
together with the fastening conditions (2 =0 for x =+ L) and
with (1.1) are the problem statement.



188 CHAPTER VI

The constant V' is the difference between the volume of liquid
layer of unit thickness and the corresponding volume of the vessel
with rigid diaphragm z =0. Therefore, V' cannot exceed the

area of segment with chord 2L and arc length e Hence, it
follows that

L? (2 — sin 29)
2sin? B

where the auxiliary parameter £ is determined as a root of the

Vi< , (1.4

equation

sinf _ 2L

| B L’

lying in the first quarfer.

Consider the linear problem for a small difference between the
film length L and the distance ?L between the fastening points

L=2L+68, 0<6/L<<1. | (1.5)

Then the deflection from the horizontal line will be small.

Therefore, % ~ d? z/ dx?, and the equation(1.1) takes the form

d’z | ,2, _Pe"Po 2 _ny )

FL A = ; -
g T T T

which has several times been used in Chapter II.
Condition (1.2) together with (1.5) give
2 .
J (dz/dx)*dx = 25. (1.7)
~L
Inequality (1.4) reduces to | | _
vEV2/<8L3§)'£1/6. e Ca8)
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Now we consider the.case when the gravity force is directed
upward, along the positive direction of 2 -axis. Similar problem
for initially stretched membrane was examined in Chapter II. The
overload factor is 7 <.0. Hence a®>0 and solution (1.6) has
the form g

2= Acosax+Bsinax-—(pe —po)/(ny). (1.9

In the case of shape symmetrical about 2z -axis, according to
(1.3) and fastening conditions for x = + L, we obtain from (1.9)
that

aV (cos ax — cos L)
2(sinaL — aLcosal)’

Relations (1.7), (1.8) and (1.10) give the following equation

(1.10)

Z. =

(aL cos aL —sinaL)?
(«L)® (oL —sinaLcos aL)’

(1.11)

to determine ¢ L. For given L, V', § which satisfy condition (1.8)

there exists at least one solution to equation (1.11). The number
of solutions is finite for any v > 0 and grows from one to infinity

as U decreases from 1/6 to zero. After determining L, the film
shape and tension force 7 are found by (1 10) and (1 6). Thus

T'=—-ny / a“ (as is mentioned above, in this problem 7 < 0).

In a similar way the linear behavior of the system with respect
to asymmetric shape deflection is considered [6]. It was found that

for v> 72 ~ 01 the asymmetrical solutions do not exist at all,

while for 0 < v < 72”2 there are a finite number of such solu-
tions.
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1 !
0 2 4 v

Fig, 6.1. Domains of different
shapes of film equilibrium in
terms of film length and liqu-
id volume exceeding the volu-
me of vessel with rigid wall

z=0 (]: has the dimensi-

ons of length, V the dimen-
sion of length cubed)

Since for 7 <0 the equilibrium
shapes are not unique their stability
has to be considered [5,6]. To this end,
the principle of potential energy mini-
mum and sufficient conditions for we-
ak minimum were used. For n <0

and 01 < v <1/6 there exists a unique

stable shape of film equilibrium. It is
determined by equations (1.10) and

(1.11). For 0 <v <01 there exists a

stable asymmetric shape when
alL = 7. All other shapes are not

stable. Similar consideration for
n > 0 shows that for 0 < v <1/6 the-

re exists a unique and stable equilibri-
um shape. » :
As is known from § 3 of Chapter V,
the nonlinear behavior of nonten-sile
membrane shell under action of
hydrostatic pressure is found in the

form of elliptic integrals of the first F(gp, k) and second E(p, k)
kind whére ¢ is the amplitude, & the modulus of elliptic integ-

rals. The shape of film equilibrium in problem (1.1)—(1.4) is des-
cribed in parametric form by the functions

A = \/—TT;[F(qo,k)—ZE(q),k)]}xo,
z:d+2k\/%‘cos¢.~

Constants £, m, d, xqo are found from conditions of film

fastening, constancy of length L and liquid volume V.
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In [5,6] the equilibrium is considered in the nonlinear case when
the acceleration is directed in the negative direction of z -axis
when the liquid is under the film. As in the linear case, for V = 0
there exists a countable number of equilibrium shapes for the film
and liquid. When V' # O the number of such shapes is finite.

It was found [5,6] that there are six types of equilibrium shape.
Fig. 6.1 shows various domains corresponding to the type of equi-

librium. Given L and V, the shape with least potential energy
was chosen. '

The fields 14 correspond to asymmetric shapes of equilibri-
um. In the domain 4, the different portions of the curve represen-
ting film shape touch each other. This section of touch (or stick)
forms the straight line along the vertical. In the area 3 such a sec-
tion includes the fastening point and shows a bend at this point.
In the area 2 the shapes also have a bend while the touch section
degenerates into a point coincident with the point of film faste-
ning. The area | corresponds to the shapes without sections of
touch or bends.

In the areas 5 and 6 symmetrical shapes are realized. They do
not have touch sections in the area 6 while in the area 5 the touch
takes place in the axis of symmetry.

When the liquid is under the film, nonunique solutions also
exist and the shapes of film equilibrium can contain touch
sections and a corner point.

§2. Equilibrium of a spherical and semispherical film

Film in an undeformed state is a sphere of radius K and tou-
ches the walls of spherical vessel of the same radius. Two points of
film attachment to the walls are located at the opposite ends of the
vertical diameter (Fig. 6.2). In the deformed state the volume V' be-
tween the film and vessel walls is filled with incompressible fluid
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while inside the film there is a gas under the pressure p,. Gravity

force acts along the vertical. Now we present the results of [3].
Since there is an axial symmetry we can consider only the
vertical plane passing through the axis of symmetry. Axes r, 2
z are shown in Fig. 6.2, Position of the film is
R determined by equation r = r(2).
On the film surface there are folds
located in meridional planes along the cur-

ves 1 = r(z). The assumption is used that

each fold is infinitely small and that the
number of the folds is large.

According to the problem statement, in
<A the area tightly fitting against the spherical

Fig. 6.2. Spherical film a7 poth tension components (7] and Ty
in vessel dividing liqu-
id and gas are forces acting on the unit length of the

parallel and meridian, respectively) are ta-
ken to be zero. In the ome-axial zone where there are folds,

Ty =0, T isfound from the solution.

.

The equilibrium conditions have the form
Tir = F = const,

3/2
dr dr
F;i—z—2+(nyz—p0 +pe)[l+(dz) } ¥ =tl, 2.1

For the film sections attaching to the vessel walls we have (ins-
tead of equation (2.1))

r(z) = (R2 - z2)1/2.

For these sections the mating conditions are posed Moreover,
there are fastening conditions
r(-R)=0, r(R)=0 (2.2)
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and conditions of film nontensility and liquid incompressibility
R 1/2 |

dr)? R'z 4 13
[ [1+|5L) | dz=zR, z[rPdz=22R* -V, @3)
dz | 5 3

where V is the volume between the film and spherical wall of
vessel.

It may be shown [3,5] that there exists no more than one
section of film attachment to the vessel walls. This section
[2., R] may be only at the end of the interval [-R, R]

(Fig. 6.2). In the presence of attachment section we can use, inste-
ad of conditions (2.2), the following

r(-R) -0, r(z4) = (R2 - 23)1/2,

(2.4)
-1/2
(dr/dz)z* = —z*(R2 — zz) / , By =20,
Solution 7(2) has to satisfy the inequality
r(z) £ RSinS—gj2 (—R 2252, (2.5)

where §(z) is the arc length of the curve r = r(z) measured from

the point 2 = —R. This inequality expresses the fact that the

radius of circumference in horizontal section of the film is less
than the radius of circumference generated by the same points of
the film in its undeformed state.

The case F =0 corresponds to the non-tensile state of the

film. Therefore, the liquid has free horizontal surface 2 = 2.

The film, in this case, consists of three parts: the vertical bundle
r =0 for —R < z < 2, the part floating on the surface z = 2

and the part attaching to the vessel walls, zg <2 < R. Such a
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K=0.955 solution is realized if the filling factor
K = 3V/ (47:123) satisfies the inequa-

lity & > x; = 0.956 (about the filling

N

factor see Chapter V). When x < x

the film is stretched and the value F is
greater than zero and is determined in
the course of the problem solution.
Problem (2.1)—(2.5) was solved nu-
merically [3]. Fig. 6.3 shows the film
shapes corresponding to different valu-
es of the filling factor k.
Fig. 6.3. Position of film and Fig. 6.4 shows the dependence’ of

liquid in the volume under nondimensional force of tension

the film for different valu- ] 3 )

es of filling factor (coordi- [=F / (ny R ) on the coefficient .

nates z and r are referred to
the radius of sphere R)

The function f(k) has its maximum,

which is f ~ 0022, at k¥ = 0.3. Thus

the maximum tension of the film takes place when thirty percent
of the vessel volume is filled with liquid.

K
f
0.4}
0.02|-
0.2} n
0.01 |- : 0 UU 4'5 T
1 e 1
0 0.6 K 1K
Fig. 6.4. Nondimensional force of Fig. 6.5. Relation between the fil-
tension in one-axial zone (the cor- ling factor of semispherical film
responding shapes are shown in and the angle of spherical
Fig. 6.3 for different k) as a segment

function of filling factor
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ilibrium, are those with maximum value of a°. The maximum
tension force arises at the top of spherical segment.

When the liquid is under the film the required surface of equ-
ilibrium consists of a two-axial area in the form of spherical belt
and of an unstressed area which is a circle in horizontal plane. In
this case maximum forces occur on the film contour.

§3. Equilibrium of a cylindrical film

Nontensile film in an undeformed state is a circular cylindrical
shell of radius R and height L. Its edges are fastened in hori-
zontal planes z =0 and z = — L. It is assumed that L < L. The

axis of symmetry 2 is directed oppositely to the gravity force.
Vi ‘ — Position of the film is determined by

K the function r(z). All lengths are

> - "1 referred to the radius R.
Inside the cylindrical film there is
a liquid while outside a gas. The film

0.05} is assumed not to have common po-
int with the axis of cylinder and not
to be in touch with vessel walls. In

| such a statement this problem was
0 ‘ 0‘_'5 : g considered in [4]. Now our conside-

ration will follow [4,5].
Fig. 6.7. Critical volumes of As in th Cas[e z]f semisoherical
liquid determining the type of . the P

membrane equilibrium film examined in previous paragraph,
the equilibrium shape of cylindrical

film may consist of two-axial and one-axial zones. The former
corresponds to the cylindrical shape of equilibrium. In one-axial

zone (Ty = 0) the film equilibrium is determined from the solu-

tion of a nonlinear problem for an equation like (6.1) using con-
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ditions of fastening, smoothness, nontensility of the film, and in-
compressibility-of the liquid.
Four types of film equilibrium have been found numerically.

Their realization is determined by parameters L, L and V,
where V' is the liquid volume.

For each value of L and L there exist five critical liquid
volumes which are denoted further by Vy, V|, Vg, V3, V. The
type of film' equlhbnum corresponding to
these volumes is determined as follows. For 5
V3 <V <V, the whole film is in one-axial

OiN

1

0.5

e

state. Equilibrium with one one-axial and
one two-axial areas corresponds to the case = -5

Vo <V <V3.If V] <V < Vy the film has \
two two-axial and one one-axial areas.
When Vy <V <V there are two two-axial
and two one-axial areas.

Liquid volumes V5 and V, depend on L

w

-1.5
and L in a complex way while V, V|, V, « Fig 6.8. Shapesof -
. ) membrane equilibri-
are determined only by the difference of corresponding to
lengths L — L. Fig. 6.7 shows these functions  the different volumes
Vi /7 (i =0,1,2) versus parameter L — L. ofliguid
Fig. 6.8 shows the first three shapes of film equilibrium. Curves
1,2,3 correspond to equilibrium shapes of the film when the liqu-
id volume is in intervals (Vl,VQ), ,(VQ,VS), (V3,V4), respec-

tively. In all variants it was taken that L = 1.5, [ = 18.
Equilibrium shapes of the fourth type (Vo <V < V}) which are

not presented here, contain one more one-axial area near the upper

edge. When V =V, generators of two one-axial areas touch each

other at one point. For V < V; the segment of this touch enlarges.
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§4. Finite strains of a membrane

In conclusion of the Chapter we consider deformation of a cir-
cular membrane accompanied by significant displacements and
shape changes. Material of the membrane is assumed to be incom-
pressible, deformation to be described by elastic potential in the
form of Mooney [1]. Tension of the membrane occurs at the expe-
nse of changes in its thickness. Si gniﬁc'ant shape changes of mem-
brane are encountered, for example, in various sensmve elements
of hydrosystems, displacing devices, etc. :

A circular membrane of ribbon-like material is fastened along

the outline of radius R, being subjected to a gas pressure p,

from below, from above by hydrostatic liquid pressure so that the
pressure difference (pos1t1ve direction of z -axis downward) is

o P =potrZ— Pe. : ‘ (4.1
Further we put the origin of coordinate system 2,  into the ceh_—

ter of the deformed membrane. |
- Following [2] the solution of the problem will be presented for

the case when the elongation factors A, and A, . in radial and
annular directions, respectively, are expressed in terms of
deformations &,, £y by linear function

Ar=l+g, Ag=1+sg.
| -1
For an.incompressible material A4, = (/’t,ﬂ,@) = h/ hoy where

ho, h are the thicknesses of membrane in undeformed and
deformed states, respectively. Let us take |

o, =8(C1+C )(s +%59), 0‘928(61+C2.)(89+—;'8r).

Then the forces in radial and annular directions are. expressed as
follows T, = o,h, Ty = ogh.
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Physical constants of material C; and C, are related to the

elasticity modulus E by the expression E =6(Cl +CQ). Let us

use the notation [ for Cy /Cl and introduce functions y and

w by the formulae

Po — Pe

rar=~%(l+F)y/, Z=w+———. (4.2)

Y

The equations of membrane eqﬁilibrium take the form [2]

8 2
r_d_z;qd_w_ ,/,zgcl(d_W) |
dr dr dr (4.3)
2
d'//dw_l_wdwm_g_ -y
dr dr dr? 31+1I

In the center of strained membrane

w=~(po—~pe)/y, y=0 (r=0). (4.4)
Moreover, it follows from the conditions of axial symmetry that

-2(s)
R
0.8 N \/P\

s / _‘//\\
0‘4“ / 7\\/<>\
AN

| / \

.
0 0.4 0.8 R
Fig. 6.9. Equilibrium shapes of
stretched circular membrane un-
der various differences of pres-
sure in gas and liquid

§ 1 o
:_f\\\~ ;\1’
3 \\
AN
1.4 ) o
= {
—~ N
g5 %]
1.0 0.4 0.8

Fig. 6.10. Main elongation fac-
tors for different pressure diffe-
rence of gas and liquid
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dw/dr =0 (r = 0). At the fastened edge £y =0 or

d

——W———l—gyzO (r=R). 4.5)

Not going into the details of the solution of (4.3)—(4.5), we
note only that, given stress, one can determine the displacement
of membrane points and then the value of volume AV of liquid
displaced. The problem has been solved by an analytical method
(r/R power series) as well as by a finite-difference method [2].

Fig. 6.9 shows the meridional sections of strained membrane
for different values of load parameters

C = (po - pe) R/(2Ciho), D =—7R?[(2Ciho).

In the figure 1" =01, D =1 were used. Dashed lines corres-

pond to the trajec-tories of transition of undeformed membrane
A points into points of deformed surfa-
T

p
éé

D;o,z/ // factors A,, Ay on the distance 7/R

_0,% are presented in Fig.6.10 for some pa-

0.04 10 1 rameters of hydrostatic load. One can

7/ / /20/2 see that in the neighborhood of the

/ center of stretched membrane there is

0.015?(/ / an area where the elongation factors
0 0.02 c A, Ay areequal to each other.

Fig. 6.11. Volume of disp-
laced liquid as a function of
determining parameters

Volume of liquid displaced by
membrane is defined by the parameter

AV/z. This volume is pre-sented in
Fig. 6.11 as a fun-ction of the parameter C for different values of
intensity of the gravity field. We note that the parameter AV/7 is

equal to AV’/ (ﬂ'RS-) where AV’ corresponds to a dimensional

volume.



CONCLUSION

This book represents an effort to collect some characteristic
static problems of hydroelasticity and to describe them from their
common foundations. Remarkable is the fact that the mechanical
behavior of objects different in their construction and dimensions
(sometimes by several orders of magnitude) are often described by
closely similar models. To determine the behavior of a cellular
membrane (see, for example, the book by E.A.Evans, R.Skalak,
Mechanics and Thermodynamics of Biomembranes, RCR Press,
Inc., 1980), the same equilibrium equations of a soft shell and me-
dium contained in it are used as for huge aerostatic objects such
as dirigibles, b.alloo‘ns and air-supported building constructions.

Not all problems relevant to the subject of this book are
covered. First, each of the six chapters may be enlarged. For the
most part three-dimensional problems are neglected as well as
some nonlinear effects. Secondly, not all classes of static problems
of hydroelasticity are touched upon.

An example of the last statement is the problem of interaction
which arises when plastic deformations appear in the solid body
and during the transition of the liquid from a liquid phase into a
rigid one (ice). These phenomena are widely known in nature and
engineering. Water freezing in a pipe-line causes large and plastic
deformations. The flaring of the cylindrical walls of a vertically
standing barrel and a rather significant buckling of its bottom are
observed. All this also depends on the water level.

In this and other examples, the number of which is very large
the formulations of the problems of hydroelasticity change. Hyd-
rostatic forces in the fluid may not dominate but rather volume
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expansion is significant (the specific volume of water at 4°C is

equal to 1cm3/g and of ice at 0°C to 1.09 cm?g). With phase
transition the conditions on the contact surface change. Con-
ditions of equality for not only the normal components of deflec-
tion and forces (as everywhere in the book), but also their tangent
components are needed. ‘

An expanded treatment of the subject of hydroelasticity might
also include some technological techniques of plastic formation of
thin-walled parts using not only fluids, but also granular media.
For example, to produce a bent tube for some measuring instru-
ments, first the crystalline salt is pressed in the space of a straight
tube. In the course of further bending of the tube on a matrix it
ensures the conservation of the circular shape of its cross-section
(without such a filler it becomes flat). The mathematloa,lfformw
lation of this problem has to involve the equilibrium equations of
granular media. Conditions on the contact surface should take
into account the possibility of some mutual slip of the media and
the dependence of the slip on the pressure on this surface.

Note that many problems of such a kind have not been formu-
lated yet and their solutions have not been found. They may be-
come a subject of future research.
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